
i

F

UNIVERSITY

S¸_ • /J i_Tz5 _ ?Z,_'/----

/_- go - cM

p-/ S

A System for the Real;Time Display of

Radar and Video Images of Targets

W.W. Allen and W.D. Burnside

(_ASA-CR-18BO58) A SYSTEM FOR THE REAL-TIMF

DISPLAY OF RAOAP AND VIDEO IMAGES OF TARGFTS

(Ohio State Univ.) 155 p CSCL 17I

The Ohio State University

N91-21394

Unclas

G3/32 0003344

ElectroScienceLaboratory
_CC_CC-. 3LZ_;_T_ [Z;2 _'Z--_:_ _ _:-_2___±_]_:Y'T'_---'_;-_-_--_ _ZZ_E!_ _Z --2_L__

Department of Electrical Engineering

Columbut, Ohio 43212

_7=' } -_772_1_1 _ ? 7 27121 1_ iL/iii_£111iTii-ZTii7_ /ILZ :1_ 1! 2

_!it,,,# " L: t

Technical Report 722780-I

Grant No. NAG 2-542, Supp. No. 2

August 1990

National Aeronautics and Space Administration

..... Ames Research Center

Moffett Field, CA 94035

_nd

Pacific Missile Test Center

Point Mugu, CA 93042

A. Approved for public release; Distribution is unlimited

NOTICES

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

w

B

w

w

J

502T2-101

REPORT DOCUMENTATION I. REPORT NO.

PAGE

4. Title and Subtitle

2. S. Reciplent's Accesslon No.

S. Report Date

August 1990

A System forthe ReM-Time Displayof Radar and V!deo Images of Targets

T. Author(s)

W.W. Allen and W.D. Burnside

9. Performing Organization Name and Address

The Ohio State University

ElectroScienceLaboratory

1320 Kinnear Road

Columbus, OH 43212

12. Sponsoring Organisation Name and Address

NASA PacificMissileTest Center

Ames Research Center Point Mugu, CA 93042

MoffettField,CA 94035

6.

S. Performing Org. Rept. No.

722780-1

10. Project/Task/Work Unit No.

11. Contract(C) or Grant(G) No.

(c)

(G) NAG 3-542, Supp. No. 2

15. Report Type/Period Covered

Technical Report

14.

18. Supplementary Notes

16. Abstract (Limit: 200 words)

This report describesa software and hardware system for the real-timedisplayof radar and video

images for use in a measurement range. Itsmain purpose isto give the reader a clearidea of the

softwareand hardware designand itsfunctions.This system isdesigned around a Tektronix XD88-30

graphicsworkstation,used to displayradarimages superimposed on videoimages of the actualtarget.

The system'spurpose isto provide a platformforthe anMysis and documentation ofradar images and

theirassociatedtargetsin a menu-driven,user-orientedenviromnent.

IT. Document Analysis a. Descriptors

IMAGING

SIGNAL PROCESSING

SIGNATURES

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

2-D

3-D

VISUALIZATION

18. Availability Statement

A. Approved for public release;
Distributionisunlimited.

19. Security Class (This Report)

Unclassified

20. Security Class (This Page)

Unclassified

31. No. of Pages

155

]2. Price

w

See ANSI-Z39.1S) See Instructions on Reeerse OPTIONAL FORM 2T] (4*TT)

Department of Commerce

Contents

CHAPTER PAGE

1 Introduction 1

2

3

4

5

Compact Range and Radar Imaging Principles 6

2.1 Compact Range Theory and Operation 6

2.1.1 System Calibration 7

2.1.2 Clutter Reduction 8

2.1.3 Compensation for System Drift 9

2.2 Inverse Synthetic Aperture Radar Imaging 10

2.3 Scattering Center Imaging 12

2.4 Time Domain Response Tracking 13

2.5 Image Presentation 15

System Hardware
3.1

3.2

3.3

3.4

3.5

3.6

3.7

16

Introduction 16

Tektronix XD88-30 Workstation 18

Imaging Technology FG100V Video Processor 18

NEC Corporation NC-8 Video Camera 19

Matrix VME Parallel I/O Board 19

IBM PC/AT 19

Data Translation Parallel I/O Board 20

X-Windows Overview 21

4.1 Widget Programming 21

4.1.1 Example : The Command Button Widget 22

4.1.2 Example : The Box Widget 24

4.2 Event Model Programming 25

4.3 Programming Style 26

Software Design Philosophy 27

5.1 Display Screen Partitioning 28
5.2 Main Menu 29

| •

lag

in

PRECEDING PAGE BLANK NOT FILMED

5.3 Pop-up Data Input Windows 29

5.4 Error Recovery 29

5.5 Interfacing to the Real Time Data Processing Program 30

6 Lighting and Camera Placement for Video Acquisition 32

6.1 The Ideal Target and Lighting 32

6.2 Lighting for the Compact Range at the ElectroScience Laboratory 35

6.3 Camera Placement and Lens Choice 38

6.4 Lighting and Camera Placement Results 42

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

An X-Radar User's Manual 48

hfitialization of Shared Memory Resources 48

Executing X-Radar 48

Camera and Lighting Adjustment 49

Acquiring a Video Image 49

Displaying a Radar Image • • 50

Scaling and Align_ngthe_Ra_iar_irnage ._: ,_: :_:::.. : 51

Saving Video and Radar Images 53

Changing the Color Map 53

Program Usage Examples 54

7.9.1 Example #1 : Capturing a video image and aligning with a

radar image : . . , . . ,::, :. 54

7.9.2 Example _2 : Displaying Real-Time Radar Images on a

Captured Video Image 61

7.9.3 Example #3 : Displaying an ISAR image 64

8 Conclusion 67'

APPENDICES

A Programming the FG100V Video Board 69

A.1 VME Protocol Address Spaces 69

XD88 VME Device Address Space 72

Shared Memory Initialization 72

A.3.1 Listing 1 -- SHMANIT.C 72

A.3.2 Explanation of Listing #1 73

Shared Memory Attachment in X-Radar 74

FG100V Control Software 76

B Listing of X-Radar 79

B.1 Program ITI_Jnit.c 79

B.2 Program xradar 81

B.2.1 Module xrdr.c 81

iv

w

2 :

w

B.2.2

B.2.3

B.2.4

B.2.5

B.2.6

Module xinterface.c 89

Module ximage.c 106
Module xframe.c 119

Module xcom.c 125

Module xutil.c 128

C

D

X-RADAR Errors 141

C.1 X-RADAR Error Messages 141

X-RADAR Data File Forrrmts 143

D.I Radar Image File Format 143

D.2 Video Image File Format , 144

D.3 ISAR Image File Format 144

Bibliography

w

w

w

V

w

,onW

alp

!

lii

w

i

w

w

w

w

m

.-t_,

List of Figures

1 ISAR image of an aircraft test body 2

2 ISAR image with outline of target 3

3 Scattering center image superimposed on a video image of the target. 4

4 A compact RCS range 7

5 The timing diagram of various clutter and target returns 9

6 ISAR image of a square aluminum plate 11

7 Scattering center image of three spheres 13

8 Time-domain tracking image of a aircraft test body 14

9 Block diagram of PC/AT - based imaging system 17

10 Block diagram of XD88 - based imaging system 18

11 X-RADAR main window with sub-window partitions 28

12 An example of the correct lighting and target 33

13 Lighting diagram for previous figure 34

14 An unpainted aluminum test target 36

15 The same target with a light coating of white paint 37

16 Aircraft model against a black background 39

17 Aircraft test body against a blue absorber background 40

18 Side-view of compact range showing top-view camera placement. 41

19 Down-range view of range showing slde-view camera placement... 43

20 Top view image of an aircraft test body 44

21 Side view image of an aircraft test body 45

22 Top view image of dihedral test scatterers mounted on styrofoam.. 46

23 Side view image of dihedral test scatterers mounted on styrofoam. 47

24 Main screen after video image capture of aircraft test body 55

25 Setting the top view scale factors 56

26 Setting the rotational offset 58

27 Setting the top view offsets 59

28 Entering the video output filename 60

29 Main screen after entering the RTDP mode 62

w

_LJNTENTIONAt[|

3rll

PRE'CEDt_._G PAGE BLAbIK NOT HLMED

30 Side view of aircraft test body during RTDP mode 63

31 Main screen for ISAR file name entry 65

32 ISAR image of an F4 aircraft 66

33 Memory organization in the XD88 Workstation 70

34 Usage of the AMC to calculate the physical address of a VME device. 71

35 FG100V control register map. 78

i

m

W

m

m

i

m
J

i

ig.

VIII

l

. .

w

List of Tables

Command button widget resources and their default values

Box widget resources and their default values

23

24

w

w

w

ix

i

i

i

Ji

i

i

J

i

|

i

|

i

aid

Chapter 1

Introduction

w

m

m

w

w

The documentation and visual correlation of radar images with their associated

targets is a continuing problem since a radar image is not necessarily recogniz-

able on its own. Figure 1 is an inverse synthetic aperture radar (ISAR) image

of an aircraft test body [2]. This problem is particularly acute for high speed,

high resolution imaging techniques, such as the 3-D scattering center imaging as

proposed by Dominek, et al. [1] The usual solution to this problem is to superim-

pose the radar image on a scaled outline drawing of the target. Figure 2 shows

an example of this method, showing the ISAR image of Figure 1 superimposed

on an outline drawing of the target [2]. This technique is used for both computer

displays and for publications. While this gives the observer information about the

outline surface of the target, it does not convey information about specific target

features, such as joints, window openings, etc., all of wlfich can cause significant

radar image features. Further, it does not provide documentation of the target

itself or any modifications that might have been carried out on the target, such as

the application of absorbent material to specific areas of the target.

A far better solution to this problem is proposed in this report. If, instead

of an outline drawing, let us imagine the radar image superimposed with a video

image of the actual target. In this way, many more features of the target become

evident,such as joints, window openings, surface treatment, fasteners (bolt and

-w

I i I i I I I I i I I I

0

o

-80 -7,0 -6.0 -50 -4.0 -3.0 -20" -1.0 O0 1.0 20 3.0 40 5.0 6.0 7.0 80

TIME IN NANOSECONDS

i

m

Figure 1: ISAR image of an aircraft test body.

i

2

g

m -=

o
O -
ttJ
O_

Z --

_za
_,-

W

_-

m

I I I II I I I I I I I
i
I
I
I

o
I I I 1 I I I I I I I I t I

40 -7.0 40 -5.0 -4.0 -3,0 -2.0 -_0 Ok) 1.0 2.0 3.0 4.0 S.O 60

TIME IN NANOSECONDS

I I .

D

m

I

70 eO

i

iii,

i

Figure 2: ISAR image with koutline of target.

rivet heads), etc., can be easily identified. Additionally, it provides unambiguous

documentation of the target and modifications made to the target. Figure 3 is a

screen print from the system described in this report. (Note: magnitude data in

the radar images in this report has been suppressed to offset the limitations of black

and white reproduction.) The figure shows the same target as in Figure 2 with a

scattering center radar image superimposed on it. Clearly, the method described

herein provides much more information about the target than in Figure 2. Such a

system can also be an extremely useful diagnostic tool for diagnostic radar ranges,

serving as a visual check on the validity of the data during the data collection and

processing sequence.

ORIGII_L PAGE IS

OF POOR __

i

I

I

m
i

i

m
I

i

m

I

m

i

m
I

Figure 3: Scattering center image superimposed on a video image of the target.

The system described in this report is composed of a high-speed graphics work-

station interfaced to two video cameras. It is also interfaced to the data acquisition

computer which controls the compact radar range hardware. Two independent

pieces of software running concurrently on the graphics workstation handle the

data processing and the radar/video image display. This report focuses on the

video/radar image acquisition and display portion of the system. This system was

u

I

I

U

g

4
i

w

_4
• J

w

developed for use in the compact radar range measurement facility at the Ohio

State University ElectroScience Laboratory.

t

w

m
w

z
w

w

W

W

w

÷

w

w

w

f/!

5

U

I

Chapter 2

Compact Range and Radar

Imaging Principles

While there are several different techniques for generating radar images, they are

all closely related to radar cross section (RCS) measurement and analysis. Itigh

resolution time or frequency domain data is required to produce these images, so

any discussion of radar imaging techniques must begin with a description of the

techniques used to generate this data.

2.1 Compact Range Theory and Operation

Pure time domain measurements are difficult to achieve, so an equally viable

method of producing this data is to measure data in the frequency domain and

then transform it, using the inverse Fourier transform, to the time domain. A

diagram of an RCS measurement system is shown in Figure 4. The important el-

ements in the system are a swept-frequency transmitter, a receiver, a broad-band

antenna system, a recording and processing system and a target pedestal which

may be rotated to position the target. For most imaging techniques, the target

must be in the far field zone of the antenna, and in order to conserve space, this

is achieved by placing the feed antenna at the focus of a parabolic reflector. The

parabolic reflector produces a plane wave in the area of the target, and the system

is known as a compact range RCS measurement system.

J

R

W

E

W

W

w

i

W

m

w

mJ

m

U

w

u

L _-

w

w

w

w

r

w

Three basic problems must be overcome in any RCS measurement system.

First, the system must be calibrated to compensate for variations in system gain.

Second, clutter from scatterers other than the target must be reduced to acceptable

levels. And finally, compensation must be made for system drift.

REFLECTOR

NSMITTED

IGNAL=_

._EIVER

TARGET_

EDESTAL

BACK

WALL

Figure 4: A compact RCS range

w

2.1.1 System Calibration

The variations in system gain as a function of frequency are determined and com-

pensated for by comparing measured RCS data with the theoretical RCS data of

the same target. A sphere is usually used as the target for this procedure, as the

theoretical RCS of a sphere as a function of frequency is easily calculated. The

following equation defines the system gain :

Re f erenceData
SystemGain = TheoreticaIData (1)

u

where Reference Data is the measured backscattered fields of a sphere as a

function of frequency and Theoretical Data iS_the _backsCa_ered 'fields of a sphere

as a function of frequency as calculated by the MEI solution [3].

The target data is calibrated-by dividing it by the system gain, giving the

following calibration equation :

RawDala

CaIibratedData = Re f erenceData " TheoreticalData (2)

where Raw Data is the measured backscattered fields as a function of frequency

of the target under measurement.

This allows the variations in system gain to be removed from the raw data

before performing the transformation to the time domain.

2.1.2 Clutter Reduction

Virtually any object, aside from the target itself, in the radar range will cause clut-

ter which interferes with desired the RCS measurement. The antenna mismatch,

tile parabolic reflector, and the walls of the room are all major clutter sources.

However, most of these components can be removed from the received signal by

time gating. Figure 5 illustrates the timing of these various components. At time

to, a transmit pulse is sent to the feed antenna. There is an immediate return due

to the impedance mismatch in the antenna. At time tl, the receiver receives tile

direct return from the reflector. At time t2, the desired signal from the target is

received and finally, at time t3, the reflection from the back wall of the room is

received. So that only the desired return from the target is received, the receiver

is only enabled during the 'range gate' surrounding the target return. The timing

and length of the range gate are determined by the position and size of the target

so that unwanted reflections are kept to a minimum. Even with the range gating

technique, there is still enough residual clutter that another technique must be

applied. This is known as background subtraction.

L

b

w

E

L .

u

w

SIGNAL

RANGE

GATE_

tO tl

ANTENNA REFLECTOR

MISMATCH

t2

TARGET

I

III

t3

BACK

WALL

TIME

Figure 5: The timing diagram of various clutter and target returns.

Background subtraction may be used to remove clutter which is present within

the receive range gate since the system can measure the complex scattered fields.

This clutter is from scatterers in close proximity to the target itself, such as the

target pedestal and absorber. A background scan is performed first, without the

target in place. RCS scans of the target are then made and the background scan

data is subtracted from this data. This process removes the contributions from the

unwanted scatterers in the frequency domain data. This process works successfully

provided that there is little or no electromagnetic interaction between the target

and the pedestal or chamber.

2.1.3 Compensation for System Drift

Any analog electronic equipment is subject to long term drift due to temperature

and aging effects on the components. The effects of this drift can be removed

from the data by comparing the measured raw data with data from a fixed target

which is always present in the range. In the OSU compact range, the backscatter

from the parabolic reflector is used as this reference target. The compensation is

performed by switching the receive gate between the reference and target returns.

9

The target data is then scaled to the reference data. Since the time difference

between the reference and target measurements is very small, very little drift can

occur within this short period. This procedure minimizes the variations due to

system drift.

g

m

2.2 Inverse Synthetic Aperture Radar Imaging

The traditional method of producing radar images from a fixed radar system is

known as inverse synthetic aperture radar (ISAR) imaging [5]. In this method, the

target is rotated through 360 degrees (for a fully focussed image)and frequency

domain response data is recorded at small incremental angles. A two dimensional

inverse Fourier transform is then applied to this data to yield a two dimensional

image matrix, with the elements of the matrix representing the relative response

at a particular down range and cross range location. Since the radar signal travels

at the speed of light, the absolute down range and cross range location can be

inferred from this data.

One of the severe disadvantages of this method is the amount of data required

to produce the image and, hence, the computational resources needed. Typically,

a fully focussed ISAR image requires approximately 30-60 minutes of CPU time on

the Digital Equipment Corporation VAX 8550 at the ElectroScience Laboratory.

Clearly, it is not possible to apply this method to a high speed radar imaging

system, although this method does produce a high quality image. Figure 6 is an

ISAR image of a tilted square plate, from data scanned over 90 degrees. Tile

responses outside the obvious boundaries of the plate are due to interaction terms,

which are caused by energy coupling to the surface of the plate and diffracting off

the edges and corners. Note that ti_e image processing is based on direct scatter

back to the radar which means that mechanisms that propagate on the surface of

the target are not imaged properly. Thus, these terms don't appear on the extent

of the target.

10

m
I

I

I

i

/

m

B

m

J

W

J

w

.

Figure 6: ISAR image of _ square aluminum plate.

=

w

11

OR_GII_"4L PAGE IS

OF POOR Q_'AL.ITy

w

2.3 Scattering Center Imaging

While the traditional ISAR method described above assumes that either the target

or the radar can be rotated to gather data at the required look-angles, some targets

cannot be rotated due to size or fragility. For common RCS measurements, the

usual solution is to laterally defocus the feed to obtain backscatter measurements

over a relatively small range of look-angles. However, this assumes that the phase

front of the incident waye remains p!anar a s the feed:=: is:: ::laterally displaced and

this is only valid for small displacements. The phase front produced by lateral

displacement of the feed is actually astigmatic or nonspherical and cannot be

used for imaging, where absolute phase accuracy is required. Recently however, a

technique for focussing this astigmatism has been developed at the ElectroScience

Laboratory [4]. Further, this technique is applicable to both near- and far-zone

measurements.

This tech_que makes use of the fact that the target area of the compact radar

range is well defined. If an arbitrary down-range image plane is defined in the

target area, then there will be a well defined distance between a test point in tile

image plane to each feed element or feed location. Subsequently, the phase of the

backscattered field received at each feed element from a scatterer located at the test

point can be calculated. I i_ the measured backscattered field is multiplied by the

complex conjugate of the calculated phase and summed over all the feed elements,

then the backscattered field from points in the image plane where scatterers exist

will sum coherently, and incoherently for all other points. Consequently, a cross-

range image of the scattering centers will be obtained. The down-range location

of a scattering center is found either by moving the image plane Or by a frequency

scan procedure, as outlined in [4]. Figure 7 shows a radar image, displayed as a

surface plot, of three spheres generated using this method.

The main advantage of this technique is that the target does not have to be

U

m

g

m

i

w

I

i
I

12

w

_o

Figure 7: Scattering center image of three spheres.

m

rotated to obtain the scattering center image, thereby making this process very

fast, and therefore it is well suited to producing images in real time.

2.4 Time Domain Response Tracking

Another method of creating radar images is known as Time Domain Response

Tracking. This approach requires a minimum of two swept frequency scans at

different look angles or different feed positions. Each swept frequency scan is the

backscatter response of the target which is transformed to the time domain to

13

ORIGINAL PAGE IS

OF POOR QUALITY

I

Ill

m

im

Ell

=
I

io

aim

=

lira

Figure 8: Time-domain tracking image of a aircraft test body.

find the down range location of the scattering centers. The cross range location

of the scattering centers is obtained from the change in position of the time do-

main scattering features between successive look angles. Calculating the impulse

response from the frequency scans requires only a one dimensional Fourier trans-

form. The white rectangles in Figure 8 represent the radar image of a aircraft test

body generated using this techniquel

Obviously, since a minimum of two one dimensional transforms are required,

this method is extremely fast, and it has the advantage that the relative ampli-

m

mm

m

w

!

g

14

i

m

tudes between the various scattering centers are well known. The disadvantage to

this method is that there are substantial ambiguities in the tracking of the time

domain scattering features, ltowever, recent work with this method has improved

by adding tracking algorithms used to correlate the scattering features between

successive look angles.

2.5 Image Presentation

The radar image display system described in this report is capable of displaying

radar images generated by any of these methods, but since the system was designed

to display the images in real time, the high speed imaging techniques are of more

interest.

L_

r_

w

w

w

m

15

lit

m

L_

m

Chapter 3
m

m

System Hardware
m
I

3.1 Introduction

The radar image display system described in this report was envisioned to operate

in real time, in the sense that the imaging system could operate concurrently with

the data collection and processing system. Further, the imaging system needs the

capability to capture and display video images together with color presentations of

scattering center images. In addition to these basic requirements, it was felt that

the ability to transfer the video/radar image to video tape would be invaluable,

particularly to visiting users of the facility.

The choices involved in selecting the system hardware were made based both

on availability and functionality. The system was originally implemented on two

IBM PC/AT's and a DEC VAX 8550, as outlined in Figure 9. This original system

was tested for functionality and ease of use for several weeks. While this evaluation

confirmed the usefulness of the concept, the speed limitations inherent with that

approach didn't make it as attractive as necessary for day-to-day operations. It

was found that the primary speed limitation was the necessity to send raw data

to the VAX and then send processed data back to the PC used to display the

images. The software needed in the PC was too slow to maintain the desired image

rate. Writing new software for the image display PC was investigated, but it was

decided that even this would not solve the problem. At this point, it was obvious

16

W

I

I

i |

U!

g

w

Io0E Io0IN0MONITOR _ SYSTEM
, VIDEO,MONITOR
I/BOA [

PC/AT

IETHERNET

8550 l-

VIDEO CAMERA

SIDE VIEW
VIDEO CAMERA

RADAR
SYSTEM
MONITOR

IBM
PC/AT

16-BIT

ETHER/qET

W

=

w

=

w

= :

Figure 9: Block diagram of PC/AT - based imaging system.

that a whole different system would be necessary. In fact, it was decided that

the processing and image display had to be done on the same computer. Several

options, such as adding an array processor to the PC, were explored, but these

were also too slow. The Tektronix XD88-30 Graphics Workstation was chosen

due to it's extremely high speed, it's ability to process and display high resolution

graphics and because it is a muiti-tasklng computer, which is capable of running

more than one process at a time. The other components of the system were

chosen to be compatible with the XD88-30. The system hardware consists of

the Tektronix XD88-30 Graphics Workstation, an Imaging Technologies FG100V

Video Processing board, a Matrix Corporation VME Parallel I/O board,two NEC

Corporation NC-8 Color Video Cameras, an IBM PC/AT, and a Data Translation

Parallel I/O board. The interconnections between the various components are

shown in Figure 10.

17

w

rlExTE Aq!VIDEO |

IMONITORI

I__

o
o

t9

XD88
MONITOR

TEKTRONIX
XD-88

SYSTEM
MONITOR

o 24-BIT
H PARALLEL IOf

i

16-BIT

PARALLEL : l

" BUS \|

• / /ISYSTEM'_RADAR

TOP VIEWVIDEO CAMERA

---J _-I SIDE VIEW
I _--JVIDEOCAMERA

3.2

Figure 10: Block diagram of XD88 - based imaging system.

Tektronix XD88-30 Workstation

The Tektronix XD88-30 is a new super-mini graphics workstation, designed to

handle both graphics processing/display and data processing. It runs under the

UTEK System V operating system (a variation of the UNIX operating system).

The normal user interface which is used in this system is X-Windows, which is

described in detail in a later chapter, The XD88-30 used in this system has 16M

bytes of main memory, a 160M byte hard disk and a high speed streaming tape

drive. The system display is a 19 inch (diagonal) full color RGB monitor with

1280x1024 pixel resolution.

3.3 Imaging Technology FG100V Video Proces-

sor

The Imaging Technology FG 100V Video Processor is a VME-bus compatible circuit

board instMIed in the XD88-30: It functions as a video frame grabber which

18

u

Z
u

g

I

I

I

Z

E

I

z

m

m

L
g

U

i

l:

r .

w

w

=
w

w

u

w

L

m

w

digitizes a frame from a video camera or other video source and stores this digitized

video image in its own on-board memory. This data is then available to the host

computer for processing and display, or the image can be displayed on a separate

video monitor connected directly to the board. The FG100V is capable of storing

up to four separate frames of video, which are captured from any one of four video

inputs. Each frame of video is digitized to a resolution of 512x480 pixels (from an

NTSC standard composite video signM). In addition, the FG100V has provisions

for many specialized image processing techniques, Mthough in this application

these capabilities are not used.

3.4 NEC Corporation NC-8 Video Camera

The NEC NC-8 Video Camera is a color video camera which is suited to the low

light-level conditions found in the compact range at The Ohio State University's

ElectroScience Laboratory. Two of these cameras are used : one mounted on an

overhead crane to provide a top view of the target (showing the target in the X-Y

plane) and another is mounted on the wall of the compact range room to provide

a side view of the target (showing the target in the Y-Z plane).

3.5 Matrix VME Parallel I/O Board

The Matrix VME Parallel I/O board is a VME-bus compatible 32-bit digital I/O

board installed in the XD88-30. It, along with the companion board installed in

the IBM PC/AT, serves as a high speed parallel communication bus between the

XD88-30 and the IBM PC/AT.

3.6 IBM PC/AT

The IBM PC/AT controls the compact radar range hardware and handles data

collection [6]. Raw data is transferred to the XD88-30 on the 32-bit parallel I/O

w

19

bus, where all data processing, display, and data storage is done. The IBM PC/AT

unit used in this system is configured with 640K bytes of main memory and 2M

bytes of extended meory. The system monitor is an EGA-compatible RGB display.
=

3.7 Data Translation Parallel I/O Board

circuitThe Data Translation Parallel I/O Board iS-a board instMied in the IBM-

PC/AT. It is the companion board to the Matrix Parallel I/O board installed

in the XD88-30 and is used to transfer data between the IBM PC/AT and the

XD88-30.

= =

m

=,=

i

m

I

g

i

m

m

g

i

20

r

E

m

F_
i

w

Chapter 4

X-Windows Overview

w

u

w

w

The X-Windows user interface was chosen for this system because it provides a

programming environment specifically designed to allow graphical user interfaces

to exist in a multi-user network environment. Although X-Windows provides a

very extensive set of basic functions for creating and manipulating graphics, these

functions tend to be too basic for creating large applications [9}. Therefore, most

X-Window programming packages also include a set of graphics objects known

as 'widgets' and a set of functions for creating and manipulating these widgets.

For this project, the widget set created at MIT known as the Athena widget set

[Xaw] and the widget toolbox known as Xt toolbox [Xt] was used [7,8].

4.1 Widget Programming

Since X-Windows is a hierarchical system, all widgets are said to be either a

'toplevel' widget or _children' of some other widget. Below a toplevel widget, all

the children are organized in a tree structure such that an operation performed on

a parent (such as deleting the parent) usually affects all the children below it in the

tree structure. Within a program, a widget is actually just a specific instance of

a dynamically allocated data structure which holds all the information necessary
?

to describe the widget. In addition to setting the parameters which describe the

appearance and the hierarchy of widgets, the major task of the programmer is to

21

!

describe what action is to be taken in response to tile various actions of tile user.

The primary benefit of a software environment, such as Xaw and Xt, is the

consistency of the interface between the programmer and the system. All widgets

have a common set of basic parameters. Identification of the parent widget, loca-

tion of the widget within the parent widget, foreground and background colors, as

well as others are specified for all widgets. In addition, parameters specific to each

type of widget are included. Further, these parameters can be set either within

the program, at run-time from a data file or from a command line. The details of

widget appearance and programming are best illustrated with several examples.

4.1.1 Example : The Command Button Widget

The Command Button Widget is a rectangle that contains a text label. When

the pointing device 1 cursor is placed within the rectangle, its border is highlighted

to indicate that the button is available for selection. When the pointing device

button is clicked, the command button widget is selected and the callback routine

associated with the widget is executed. When creating a command button widget,

numerous resources are available to the programmer to control the appearance and

behavior of the widget. Table 1 lists the available resources, the default value and

a brief description of what each resource does.

The menu of X-Radar is made up of command button widgets, each of whose

callback routines accomplishes a particular task. These callback routines can be

very simple, such as the 'EXIT' button, which simply exits the program, or very

complex, as is the callback for the 'RTDP IMAGING' button, which itself contains

a separate event processing loop. Further, the resources associated with a partic-

ular widget can be changed dynamically during program execution, For example,

the text labels for some of tile buttons in the menu of X-Radar are changed dynam-

ically to reflect thepossibie menu Choices the user has available at a given moment.

1A pointing device is a mouse or trackball

22

m
m

=

m
g

i

m
I

D

m

D

E

I

z

m
m
I

m

m

D

w

=

w

E =

L ;

Table 1: Command button widget resources and their default values.

Name Default Value Description

w

w

w

w

w

w

w

XtNbackground White

XtNbackgroundPixmap none

XtNborderColor Black

XtNborderPixmap none

XtNborderWidth i

XtNcallback NULL

XtNcursor opendot

XtNdestroyCallback NULL

XtNfont fixed

XtNforeground Black

XtNheight text height

XtNhighlightThickness 2

XtNinsensitiveBorder Gray

XtNinternalHeight 2

XtNinternalWidth 2

XtNjustify XtJustlfyCenter

XtNlabel Button name

XtNmappedWhenManaged True

XtNsensitive True

XtNtranslations none

XtNwidth text width

XtNx 0

XtNy 0

Window background color

Window background pixmap

Window border color

Window border pixmap pattern

Width of button border in pixels

Callback for button select

Pointer cursor style in widget

Callback for XtDestroyWidget

Label font

Foreground color

Button height in pixels

Width of highlighted border in pixels

Border color when not sensitive

Internal border height for highlight

Internal border width for highlight

Type of text alignment

Button label

Whether XtMapWidget is automatic

Whether widget receives input

event-to-action translations

Button width in pixels

Widget x coordinate in pixels

Widget y coordinate in pixels

w

u

5
w

23

I

Table 2: Box widget resources and their default values.

Z
u

B

Name Default Value Description

XtNbackground

XtNbackgroundPixmap

XtNborderColor

XtNborderPixmap

XtNborderWldth

XtNdestroyCallback

XtNhSpace

XtNheight

XtNmappedWhenManaged

XtNtranslations

XtNvSpace

XtNwidth

XtNx

XtNy

White

nolle

Black

none

1

NULL

4

text height

r_U e

none

4

text width

0

Window background color

Window background pixmap .

Window border color

Window border pixmap pattern

width of button border in pixels

Callback for XtDestPoy Widget

Horizontal space between children

Button height in pixels

Whether XtMapWidget is automatic

event-to-action translations

Vertical space between children

Button width in pixels

Widget x coordinate in pixels

0 widget y coordinate in pixeis

This capability allows the same command button to accomplish several different

tasks, thereby saving system resources and speeding up program execution.

4.1.2 Example : The Box Widget

The box widget provides an environment which manages the placement of other

arbitrary widgets within a box of specified dimensions. The children are rear-

ranged to best fit within tile box when the box is resized or when children are

added or deleted. Since the placement of children within the box is automatic, the

programmer has little control over the arrangement of the children. Table 2 lists

the available resources and their description.

24

U

Ill

=

B

I

I

m

u

I

u

m

J

L_

w

The menu area for X-Radar is contained in a box widget, although some control

over placement of the command button widgets and label widgets is achieved by

carefully sizing them so that they only fit within the box in a vertical arrangement.

The advantage of using a box widget is that the programmer need not calculate the

exact screen coordinates for each child widget, as would need to be done if a menu

were constructed without the box. Further, if the menu needs to be suppressed at

some point during program execution, only the box widget needs to be 'unmapped',

which will cause all of its children to be unmapped as well.

There are several methods for actually creating a widget with the desired re-

source values, and the interested reader is referred to Appendix B for the method

used for this system or to [10] for other methods.

=

w

= .

4.2 Event Model Programming

Menu-style user interfaces are said to be event-driven which means that the pro-

gram appears to be doing nothing until the user generates an 'event'. Events are

usually generated by moving and/or clicking the pointing device, typing a key on

the keyboard or by timers created within the program. X-Windows also provides

the tools to describe and accept events from any other device which might be

attached to the computer system.

Each particular type of widget provides its own mechanism for accepting events.

Part of a widget's description are parameters which associate particular events with

the widget and what action is to be taken following those particular events. It is

the job of the programmer to create logical and useful action sequences for each

particular event, such as what to do after the user clicks a mouse button on a

'button' widget.

w

25

w

4.3 Programming Style
u

Due to the very nature of the X-Windows environment, there is not a lot of room

for individual programming style. The hierarchical structure of the environment

dictates the basic order of the program, although the appearance of the application

is completely up to the programmer. Initially, the hardware environment must be

established through calls to functions which return the type of terminal or screen

on _hich the application is being run. Then, for most types of applications, the

widgets which will be needed for the application are created. Since widgets can be

created without being displayed, it is usually advantageous to create all necessary

widgets at the beginning of the program, rather than creating them as needed

within the application. In addition to creating the widgets, the functions which

are called in response to each particular event must be written. At this point, all

that remains is the event processing loop. Depending on the complexity of the

events and the way in which events are to be processed, the programmer can rely

on a loop procedure included in the Xt toolbox or write their own event processing

loop. Usually, the application ends from within the processing loop in response to

some particular event.

I

w

!

g

i

I

J

I

l

i

z
B

g

26

im

m

Chapter 5

Software Design Philosophy

!

w

w

m

w

There were several major objectives in designing this system. First, to provide

an easy to use environment to capture and display top and side views of video

and radar images; second, to provide the user with a convenient rnetho-d-0f Storing

and retrieving this information; and third, to provide an analytic tool for compact

radar range data acquisition and analysis. These goals indicated that a menu-

" driven program was needed, as well as dictating that a large portion of the screen

be dedicated to various image displays. In accordance with the program naming

convention associated with X-Windows, this program has been named X-Radar.

As discussed in Chapter 4, X-Windows dictates, to a large part, the overall

design of the software, but the appearance and ease of use of the system is pro-

grammer dependent. For this application, most of the individual users of this

system will not use thesystem ve_ often; thus, the software interface must be

as intuitive as possible. As a result, the menu item labels must be simple and

straightforward, and the error recovery procedures should be consistent and as

graceful as possible. Finally, user prompts must be used liberally to guide the

infrequent user.
/

H

27

5.1 Display Screen Partitioning

The resolution of the video acquisition board is 512x480 pixels, and the desired

elements of the main display window dictated the display screen in terms of parti-

tioning this data as well as others. Figure 11 shows one example of tile partitioning

of the main display window. The main menu is displayed along the right side of

the display. All functional selections are listed in this menu.

m

R

u
n

II

i

i

I

ltlil_/H_ti_ Hi41tU
HI [IlO

ttAU VIO[O li4Al.F fall]

kill(VID(O llilGI IIii i

i1_ LIkl piG[Fill J

RtAD liAR li_G[FIll I

_ t_]_A! !!_ _._ _J

"vlPrO !iliA5[(-ONFllOI

rli 1 Viil -) riJli iV'hi ih i

IDI ¥1ll -I rill ICIIi

lWl![_" !_O I_i____,,,'_ J

i]kl ilO[O IO 14_lTO_]

ll_tl_ GB_ki TO COl¢'Ulil I

si,.!!c. ?? !!D__v_l!_.c_]
|AOARIMAGf COSTROI

illiIT IADAR liPf.r I

KtAT£ ILAtIAI lilAC(i

lol., viii SCAti r*.CiOil._.SSI
liOi VI[W ICAI| FACIOIS

.............. i

";:" i

m
i

ll

i

file

I

i

i

ORIGINAL PAGE IS

OF POOR QUALITY

Figure 11: X-RADAR main window with sub-window partitions.

m
g

U

Two 512x480 windows across the top of the display are normally used to display

the top and side views of the radar target. These are the main image display

windows, although either one can be expanded to fill the entire display screen

m
i

i

28

w

h_

w

w

w

w

(excluding the main menu area).

The remaining 544x1024 window at the bottom is used to display system mes-

sages and data plots from the range hardware when this program is used in con-

junction with the data processing code.

5.2 Main Menu

The main menu is divided into four parts, with related functions grouped together

as shown in Figure 11. The top-most section has functions related to image file

input and output. Next is a group of functions controlling how the video images

are displayed; i.e., full-screen or multi-window. Following this section is a group of

functions for controlling the FG100V video board. And finally, a group of functions

for controlling how the radar image is displayed.

5.3 Pop-up Data Input Windows

When user input is required, a pop-up window is used. If only a single piece of

data is required, such as a file name, all keyboard input is 'focused' or forced into

that window. When input is complete, the user only needs to close the window

by clicking the mouse on the 'EXIT' button. If more than one piece of data

is requested, the user must click the mouse on the item desired and enter the

requested information. For windows where input is essential, the user is blocked

from exiting the window until all input fields are entered.

5.4 Error Recovery

Error recovery has been designed to be as painless for the user as possible. When a

recoverable error occurs, a text window containing a descriptive message is 'popped

up' on the screen. In order to assure that the user acknowledges the error, the

message window is actually a single item menu, and the user must click the mouse

29

on it in order to erase the message window. Several other approaches to this were

tried, but this was found to be the most effective way to handle errors that must

be acknowledged.

Recoverable run-time errors that the system is likely to encounter are limited to

two types. Firstl file access errors are operating system generated, and are usually

due to a specified file not being found or being otherwise unavailable. If this

type of error occurs, an appropriate message is displayed, and the corresponding

input window is re-displayed after the error is acknowledged. The second type of

recoverable error is due to the user not using the system correctly. These errors are

termed 'X-Radar Protocol Errors' and usually occur when the user does something

which is inappropriate in the current system context. Appendix C lists all of the

recoverable errors and their possible causes.

Other system errors can occur, but usually require more user attention than

can be provided from within the application. If this type of error occurs, the

program terminates, and the user is returned to the operating system.

5.5 Interfacing to the Real Time Data Process-

ing Program

This software was designed to be used in a multi-tasking environment and can

be run in conjunction with the real-time data processing program called RTDP,

which is run as a background process to this program and is described in [14]. Data

is passed from the RTDP program to X-Radar using an X Windows mechanism

known as 'window properties' [9].

A window property is a programmer-defined data structure associated with a

particular window, and as long as two applications share a common window, a

pointer to the property data structure may be passed between the applications.

The simplest window to use for this is the 'root' window, which is shared by all

applications running on the workstation. Further, 'PropertyNotifyEvents' can be

30

z

i

I

m

m
I

BB
I

m

m

m

l

z
U

I

m

I

m
I

w

L_

F_

w

passed between applications to notify each application that another application has

modified the shared property. X Windows prevents applications from accessing the

property simultaneously by storing access requests in a queue. This prevents data

corruption between applications which are writing and reading the property (this

does not prevent applications from overwriting old data before it is read however).

For this software, the property used to share data is a floating point array, large

enough to hold a complete radar image. In the RTDP IMAGING mode, X-Radar

enters an event processing loop which handles only two kinds of events : Proper-

tyNotifyEvents and ButtonPressEvents. When the RTDP program has completed

an image, it sends X-Radar a PropertyNotifyEvent. X-Radar then retrieves the

data in the array and displays it. When the display is complete, X-Radar gen-

erates a PropertyNotifyEvent, telling the RTDP program that it is ready for the

next image. This full handshaking between the two applications guarantees that

X-Radar does not miss any data transfers. This sequence is repeated until a But-

tonPressEvent (generated by pushing a pointing device button) is encountered,

which causes X-RADAR to exit the RTDP IMAGING mode.

w

m

L
_ I

w

m
w

w

w

31

w

I

Chapter 6

Lighting and Camera Placement

for Video Acquisition

Any discussion of photographic lighting must begin with consideration of the sub-

ject matter, the environment in which the photography is to be done and the ob-

jective in photographing the subject. In addition, there is always an ideal solution

and a realistic solution to a given problem, but the realistic solution requires some

compromise. And so it is with the problem in this case, which is to photograph

radar test targets which are actually mounted in the compact radar range.

The objective in photographing the target is straightforward : to render the

object with as much detail as possible, in an uncluttered, simple field of view, so

that when it is combined with the radar image of the target, only that information

which is pertinent will be visible.

6.1 The Ideal Target and Lighting

It is perhaps most informative to discuss the ideal target and lighting combination

first, as a means of illustrating the goals for which one should strive. Some of these

goals are easily achieved, while others are more difficult.

Figure 12 illustrates the photographic effect which one would like to achieve. In

the photograph, the model hangs in black space, with no extraneous background

and with full surface detail easily visible. Also the mount for the model is visible,

32

m

i

W

m

g

lip

m

Cam,

=

L.

ORIGINAL PACE _S

OF POOR QUALITY

w

v

Figure 12: An example of the correct lighting and target.

which is important for documentation.

First, proper lighting is required to render the surface detail correctly. Specular

reflections tend to wash out any surface details and also cause the video camera

to saturate. The modal in this iUustration was lit with two photographic flood

lights mounted at the same height as the model at a low angle of incidence to the

model's fuselage, as shown in Figure 13. Positioning the lights at low angles of

incidence and using diffuse lighting are two ways to minimize specular reflections.

Secondly, the background is completely black, which focuses all of the viewer's

attention on the model. While this a seemingly simple point, it is surprisingly

33

J

IBm

AIRCRAFT TEST
BODY

__i

250 WATT .._._ : :

PHOTO FLOOD

(2 PLACES)

_ SIDE VIEW
VIDEO CAMERA

i
W

NB

i

lib

I

m

i

i
m

mid

Figure 13: Lighting diagram for previous figure.

34

w

w

w

difficult to achieve in practice.

These ideas form the goals which one would like to achieve in the compact

range. Again, some of these goals are dif_cult to achieve, but there are many ways

to overcome the problems.

6.2 Lighting for t he-compact Range at the Elec-

troScience Laboratory

While the compact range is designed to do radar imaging, it was not designed to

be a photographic studio. _The walls, floor and ceiling are covered with dark blue

or black radar absorbent material and lighting fixtures are held to a minimum in

order to reduce metallic objects within the room, which might cause unwanted

scattering of the radar signal energy. _

The ambient lighting in the compact range room isprovided by four sodium

vapor fixtures in the ceiling. These lights are very bright and are not at all consis-

tent with the goal of diffuse lighting for the target. The specular reflections these

lights cause are very strong, particularly on polished targets. One solution would

be to turn these lights off during video acquisition, but due the long start-up time

of these lights (approximately 30 minutes), this is not a viable solution. Unfortu-

nately, there does not appear to be asatisfactory solution to this problem other

than to alter the surface finish of the targets.

Most of the radar targets being investigated are made of polished aluminum,

copper or silver-plated metal. Under ideal studio conditions, these types of objects

are difficult to photograph, but under the conditions presented in the compact

range room, it is a very difficult task. Several possible surface treatments wMch

would ease the lighting problem have been considered_ Probably the simplest and

easiest solution is to apply a thin coating of matt paint to the target. The impact

on the electromagnetic properties of such a coating have been investigated quite

extensively, but the results are fairly simple : if the coating is thin, in terms of

35

ORIGINAL PAGE IS

OF POOR _ALFP/

W

g

i •

I_RII[VIDIIO |I,II,GI Illl]

Figure 14: An unpainted aluminum test target.

wavelengths, and the target is a perfect conductor, the scattering properties will

not be seriously affected. For most targets of interest in this project, the target

material can be considered a perfect conductor, so a thin coating of paint shou]d

not present too much of a problem. Figures 14 and 15 show the advantages of

painting a target white. In these figures, the exposure has been adjusted to show

the target to best advantage.

A further problem caused by the ambient lighting in the compact range room

concerns the photographic appearance of the backgrounds surrounding the target.

The overhead camera looks down directly at the floor, which is covered with blue

radar absorbing material. The blue paint on the absorber reflects a surprising

36

I

I

i

m

i

m

w

= 7

,.,,.

ORIGINAL PAGE IS
OF POOR QUALITY

i

Figure 15: The same target with a light coating of white paint.

37

amount of light, making the floor appear much brighter in the video image than

to the eye. As a result, the target does not stand out significantly from the

background. The obvious solution to this problem is to create a darker background

on the floor around the target. Figures 16 and 17 illustrate this effect. In Figure 16

tile background is black; while in the other figure blue painted absorber was used

as the background. At the ElectroScience Laboratory, the absorber on the floor in

the vicinity of the target is blue, but it is obvious that the radar absorbing material

on the floor in the v_dnlty 0[" the target-shoed be changed-to a-material that is

natural black. This would provide a very dark background for the overhead camera

without affecting the overall lighting of the target or the scattering characteristics

of the range.

.The ambient lighting does not provide enough light to acquire satisfactory

video images, so additional lighting is provided by four 500 watt photographic

flood iights. Two of these are located near the focus and aimed at the parabolic

reflector of the compact range. Since the reflector is painted white, this provides a

very high level of diffuse light in the vicinity of the target. To balance the amount

of light on the target, the other two flood lights are :aimed at the back wall of the

range room. While the material on the rear wall of the room is not extremely

reflective, it does provide enough ad_ktbnai diffuse-iight to]-ight the target zone

effectively. In addition, individual targets may require even more light than this,

and up to four 250 watt clamp-on photographic flood lights are used for very small

or dark targets.

6.3 Camera Placement and Lens Choice

The placement of the cameras was determined by the viewpoints required for the

imaging system, one above the target and one to its side. The range is equipped

with an overhead crane for moving large targets into and out of the room. This

provides an ideal platform for the overhead camera. The crane can be moved

Z

ID

I

38

L

ORIG{NAL PAGE IS

OF POOR Q_JALITY

Figure 16: Aircraft model against a black background.

39

ORIGINAL PAGE IS

OF PO0_ QUALITY

r

I

W

I

lip

J

g

i

B
g

m
I

Figure 17: Aircraft test body against a blue absorber background.

m

40 i

w

L

W

CRANE

_VIDEO CAMERA

REFLECTOR

9' -9"

_ TARGET4

TRANSCEIVER _EDESTAL

L

BACK

WALL

w

w

w

w

Figure 18: Side-view of compact range showing top-view camera placement.

directly over the mounted target for filming and then moved out of the way while

radar measurements are taken.

The lens choice for the overhead camera was determined by the geometry of the

room and the maximum target size. Figure 18 shows the geometry of the room,

the crane in place over the rotation pedestal and the location of the overhead

camera. A 7.5 mm focal length lens is used for most targets. The major problem

encountered with this choice is the distortion introduced by such a wide angle

lens. Some of the distortion is accounted for in the scaling procedure used for the

radar images, but this can only correct linear distortion, not the barrel distortion

introduced by a wide angle lens. A better solution would be to correct the radar

image based on a distortion map of the lens.

The side view camera is mounted on a removable pedestal near the side wall of

41

the compact range chamber. In other applications, tiffs camera could be mounted

almost anywhere in the room, as in most compact range facilities, the target can

be rotated to provide a side view. In the Ohio State University compact range,

the camera was mounted near a side wall so that the background would be the

opposite side wall. Since the walls are covered with dark blue material and are not

well lit, this provides a relatively dark background in front of which the targets

are readily apparent.

Figure 19 shows a down-range view of the room, the target pedestal and the

location of the side view camera. Again, the geometry of the room and the maxi-

mum target size determined the focal length of the lens. A 12.5 mm focal length

is used for most work. The distortion with this lens is not as noticeable as with

the overhead lens due to the increased focal length.

6.4 Lighting and Camera Placement Results

This arrangement of cameras and lights provides very satisfactory video images

of a variety of targets. Shown in Figures 20 through 23 are video images taken

directly from the imaging system in the compact range. The targets are described

in the captions associated with each figure.

u

I

E

I

g

=_

g

u

W

m
D

w

42

=

I

i

I

BAFFLE

I_
V"

VIDEO /

CAMERA

r

I

i0'

8'

Figure 19: Down-range view of range showing side-view camera placement.

w

43

i

i

i

i

W

i

m

i

Figure 20: Top view image of an aircraft test body.

#

ORIGINALPAGEIS
OFP0O_qUALm,

44

idp

!

u

= =
u

w

w

Figure 21: Side view image of an aircraft test body.

ORIGINAL PAGE IS*

OF POOR QUALITY

4G

I

lid

,. I

tXll)

I

i

I
m

U

I

i

i

i

Figure 22: Top view image of dihedral test scatterers mounted on styrofoam.
i

I

I

46

ORIGINAL PAGE IS

OF POOR QL.IALrrY
I

U

m

r_

L

• ZII_

w

Figure 23: Side view image of dihedral test scatterers mounted on styrofoam.

ORIGINAL PAGE IS

OF POOR QUALITY

47

m

m
z

!

Chapter 7

An X-Radar User's::ManUal

I

m

m

I

One of the main goals in the design of X-Radar was to make it as user-friendly as

possible. While not all problems that the user might encounter can be foreseen, the

program is fairly straightforward to use and after a short initial learning period,

it's use should be quite simple.

7.1 Initialization of Shared Memory Resources

Before X-Radar can be executed, the shared memory resources for the FG 100 must

be initialized. This is done by entering super-user mode and executing the program

'frame_init'. If 'frame_init' has been executed since the last system power-down

or re-boot, 'frame_init' need not be executed again, although no harm is done by

doing so.

7.2 Executing X-Radar

Next, 'xradar' is executed from a command line. It will take several seconds for the

main screen and menu to appear. The program is ready to use when the command

buttons respond to movement of the pointing device.

B

z
D

m

m

m

m

m

I

I

48

= •
W

w

w

7.3 Camera and Lighting Adjustment
• /

Before adjusting the lights and cameras, the 'LIVE VIDEO TO MONITOR' menu

item should be selected so that the camera image can be viewed on the external

monitor. The video image displayed on the monitor can be switched between the

two cameras by selecting the 'SWITCIt TO SIDEVIEW CAM' or 'SWITCtt TO

OVERHEAD CAM' as required. Notice that the same menu item serves both

functions.

The cameras and lights are turned on from a central power switch. The lights

pointed at the parabolic reflector should be aimed at the approximate center of

the reflector, while the lights facing the back wall of the chamber should be aimed

towards the center of the back wall.

The overhead camera (on the overhead crane) should be moved out over the

target so that the back edge of the overhead baffle is in line with the white marks

at the top of the chamber walls. The camera should be aimed so that the center of

the video screen is coincident with the axis of the target pedestal. Tile side view

camera and pedestal should be fitted to the mating receptical mounted at the base

of the side wall of the chamber, and the camera aimed so that the vertical axis

is aligned with the target pedestal axis and the horizontal axis bisects the target

vertically.

If the lens aperture on either camera requires adjustment, it should be set

fully open, the lens should be adjusted for the best focus condition and then the

aperture adjusted so that the video image appears to have a full compliment of

gray values : from pure white to black.

7.4 Acquiring a Video Image

Once the lights and cameras are on and adjusted properly, the two video images can

be acquired and displayed by actuating the 'FRAME GRAB TO COMPUTER'

49

command button. Formation of a video image takes approximately 30 seconds,

at which time the image will appear in thee h-pper left _vindow or _the upper right

window of the screen, depending on which camera is activated. The other camera

is then selected by clicking on the appropriate command button, and the process

is repeated. Note that the external monitor video signal will respond to frame

grabs by freezing the current video image, but can be un-frozen without affecting

the grabbed image by selecting the 'LIVE VIDEO TO MONITOR' menu button.

Alternatively/if a video image is already available in a disk file, the file can be

retrieved and displayed by selecting the 'READ VIDEO IMAGE FILE' command

button. After selecting this option, a text widget will pop-up on the screen so

that the user may enter a file name. Note that a particular video image file name

will refer to two files, one holding the top view image (filename_top) and the

other holding the side view image (filename_side). Both files will automatically

be retrieved and displayed based on the root file name. For instance, if two files

named 'target.img_top' and 'target.img-side' exist, both of them will be read and

displayed by entering 'target.img' for the file name. When the file name has been

entered in the text widget, clicking the pointing device on the 'OK' button in the

text widget will pop-down the text widget and the file(s) will be retrieved.

7.5 Displaying a Radar Image

There are several ways to retrieve and display a radar image file. First, if a desired

radar image file exists on the disk, the file can be read and displayed by selecting

the 'READ RADAR IMAGE FILE' menu item. Again, a text widget appears on

the screen so that the user may enter a file name. The radar image for both views

(assuming 3-dimensionai data format is present in the radar image file) is then

superimposed on the current video image. If 3 dimensional data is not _ present

in the image file, the image for the missing view will be displayed as a line of

scattering centers along the target axis.

7_
w

mffi

J

m

I

W

w

g

m

50

u

m

w

w

Secondly, if the radar image file is an ISAR image in raster scan h)rmat, the file

can be read and displayed by selecting the 'READ ISAR IMAGE FILE' button.

Note that only one ISAR image can be displayed at a time and that the ISAR

image cannot be shifted or rotated for aligning with the video image.

And finally, if the RTDP program is running prior to executing xradar, radar

images can be displayed in real time as the data is being collected. The interface

to the RTDP program is completely transparent and selecting the 'Real Time DP'

menu item will initiate this mode.

7.6 Scaling and Aligning the Radar Image

If the video and radar images are misaligned or are scaled incorrectly, the 'Radar

Image Control' functions can be used to correct the problem. It should be noted

that alignment or scaling of the radar image should not normally be necessary, since

if the cameras are properly aligned, the video image and radar image should also

be aligned and scaled properly. If alignment and/or scaling is required however,

these procedures should be carried out on fuU screen images in order to minimize

errors. It should also be noted that these procedures cannot be used on ISAR

images.

If only a single radar image needs to be aligned, the process can be done at

any time the radar image is displayed. Selecting the 'SHIFT RADAR IMAGE'

menu item displays a full screen cross-hair cursor. The mouse is used to center

the cross-hairs on the phase center of the video image of the target. Clicking the

pointing device button then exits the selection and updates the position of the

radar image origin. This procedure should be repeated for the both the top and

side views of the target.

Rotational alignment is accomplished by selecting the 'ROTATE RADAR IM-

AGE' menu item. A vertical line will appear on the screen and the mouse is again

used to align the line with the down-range axis of the target. This procedure should

51

be carried out on both views of the target, and it may require several iteratir, ns to

achieve a satisfactory alignment for both. Clicking a pointing device button then

exits the function and updates the rotational position of the radar image.

Scaling tile radar image requires knowing the actual dimensions of the extent

of the target. For instance, if the target is an aircraft model, the dimensions of

the wingspan, fuselage length and fuselage height are required. ScaLing of the

radar image is accomplished by selecting either 'TOP VIEW SCALE FACTORS'

for the top view or 'SIDE VIEW SCALE FACTORS' for the side view. A small

menu is popped-up to guide the user through the procedure. First, the vertical

dimension item in the sub-menu should be selected by clicking on it with the

pointing device. Then, using tile pointing device, place the cursor at one end of

the vertical dimension which is known, such as on the nose of an aircraft target.

Then, push and hold the pointing device button and drag the rubber-band line

to the other end of the known dimension, releasing the button when the cursor

is properly positioned. Then, place the pointing device cursor in the small text

window next to the dimension item just selected, and enter the actual dimension

(in inches) of the line traced by the rubber band. Repeat the procedure for the

other dimension and exit the procedure by clicking the pointing device on the 'OK'

button of the popped-up window. Tile radar image is scaled and redisplayed on

exit. This same procedure should be repeated for the other view of the target. It

may be necessary to iterate the above procedures in order to reach a satisfactory

alignment of the radar and video images.

If the system is to be used in the real-time mode, a single radar image should

be used to set up alignment and scaling with the video image. This can be ac-

complished by selecting the 'REAL TIME DP' menu item, waiting until a radar

image is displayed and then exiting this mode. The initial radar image can then be

aligned with the video image using the above procedure. The real time processing

mode is then be reactuated, and all future radar irnkges should now bed'isplayed

J

m

m
i

w

I

uw

I

w
m

I

m
u

52

r

w

w

properly.

7.7 Saving Video and Radar Images

Saving existing video and radar images files is very straightforward. Selecting

the desired menu item pops-up a text widget for entering the desired file name.

Clicking the pointing device on the 'OK' button writes the file and pops the widget

down. If the system is in the reM-time mode, the radar image data is saved in the

RTDP program, but alignment and scaling information will not be saved. It should

be noted that under the UNTEK V operating system, an existing file with the same

name will be over-written, and this system does not check for the existence of a

file before writing. The formats of all files used by X-Radar are listed in detail in

Appendix D.

7.8 Changing the Color Map

An alternate monochrome color map is provided if the user wishes to display

the radar image, as well as the video image, using a monochrome gray scale.

This feature is provided so that the user may generate screen prints for use in

publications which are limited to monochrome reproductions. Clicking the pointing

device button on the 'SWITCH TO MONOCHROME' menu item will redisplay

the images using this gray-scale map. Clicking the pointing device button again

on the same menu item (the menu item label changes to reflect the next state) will

return the system to a full color color-map.

53

w

Program Usage Examples

Example : Capturing a video image and aligning

with a radar image

1. The execution of 'frame_Jn]t' has been added to the re-boot procedure

on the XD88-30 in use at the ElectroScience Laboratory, so there is no

need to execute this from a command line for this installation, however

in other installations, it may be necessary to do so.

2. Turn on the auxiliary lighting and adjust the p0si(ion of the cameras so

that they are centered on the pedestal axis in both views. If necessary,

adjust the lens aperture on both cameras for correct exposure. Camera

position, lighting and exposure can all be monitored in real time on the

external video monitor by selecting the 'LIVE VIDEO TO MONITOR'

menu item and switching between the two cameras using the 'SWITCIt

CAMERA' menu selection.

3. Capture video images of both views by selecting the 'FRAME GRAB

TO COMPUTER' menu item. The currently selected camera will de-

termine which view is captured and displayed, and the other view is

captured by switching to the other camera using the 'SWITCH TO ...

CAM' menu item. Figure 24 shows the screen after a complete video

image frame grab.

4. The radar image file is read and displayed by selecting the 'READ

RADAR IMAGE FILE' menu item.

5. If necessary, scale the radar image to the video image by first select-

ing full-screen mode for the top view and then selecting the 'SCALE

RADAR IMAGE' menu item. Select the 'SCALE VERTICAL DIMEN-

SION' item on the sub-menu and position the cursor at the bottom end

of the known vertical dimension. Push and hold the mouse button while

rz

w

W

R

Jm

r

n

u

u

m
UB

I

m

i

WlW

w

54

OR!GINAL PAGE IS
OF POOR QUALITY

VIDEO 1MAGI (O_IIIOL

IOP V|[W *) FLI[L _CIE|_ J

VIU|O BDARU CONIKO

-- _]

IlAl4f GAA| I0 C_4_t_f(I]

_ 5,D[VIt, (*M]

RIIDAIR IMA(-I CONIR_i

ROIAT(RAI}Atl IK_G[]

l_ VI[W SIAL[IA(IORS]

_ll)l VltW $CALt I'*(le,_S]

"I'_I I a .',lV:l I v.

! I

I :41i_F!i_7:]

p aar

Figure 24: Main screen after video image capture of aircraft tes{ body.

55

ORIGINAL HAGE i,_

OF POOR _.LAi,.ITY

RIAO ItAOAR IMAGE t'I[[r |

Figure 25: Setting the top view scale factors.

positioning the cursor at the top end of the known vertical dimension.

Release the mouse button and move the cursor to the small window

to the right of the 'SCALE VERTICAL DIMENSION' sub-menu item.

Enter the known vertical dimension in inches. Repeat this procedure for

the known horizontal dimension, entering it in the appropriate window.

Figure 25 shows the top view screen while setting the top-view scale

factors. When complete, select the 'OK' item on the sub-menu. Switch

to full-screen display for the other view and repeat this procedure for

that view.

i

m

g

m

B

n
I

U

u

I

I

D

W

56

rind

m

w

6. If necessary, rotate the radar image to align with the video image. While

this may be dimcult if the down range axis of the radar image cannot

be determined, if the cameras are properly aligned, only a very slight

rotation will be needed. Select the full-screen mode of the view to rotate

and then select the 'ROTATE RADAR IMAGE' menu item and move

the mouse cursor until the cursor llne is parallel with the down range

axis of ti erv]de:0im ge ? cTa n y mo:use button to accept the desired

rotation and re-display the rotated radar image. Figure 26 shows the

top view screen while setting the rotational offset. This procedure may

be repeated as necessary. Switch to the full-screen display of the other

view and repeat for that view.

7. Also if necessary, shift the radar image by selecting the 'SItIFT RADAR

IMAGE' menu item andmoving the cross-halts to the phase center of

the video image. Figure 27 shows the top view screen while setting

the top-view offsets_-(_l-ici_-any mouse button to accept the shift and

re-dlsplay the shifted radar image. Switch to the full-screen display or

the other view and repeat.

8. The above three steps may be repeated until a satisfactory alignment

and scaling has been achieved.

9. The video images should be saved by selecting the 'WRITE VIDEO

IMAGE FILE' menu selection. Enter the desired image file name in

the sub-window and select the 'OK' item in the sub-window. Figure 28

shows the top view screen while entering the filename for the video

image.

10. Exit X-Radar by selecting the 'EXIT' menu item.

57

SaD

i

g

i

il

i

r

aid

Figure 26: Setting the rotational offset.

58

ORIGINAL PAGE ;S

OF POOR QUALITY

+ +

F :

R[AD RADAR]I4AGE f]L[]

R[AD ISAI |I4AG[IlL[]

RtJt IJMI I)l']

Figure 27: Setting the top view offsets.

ORIGINAL PAGE IS

OF POOR QUALITY

59

W

i

i

i

i

i

i

i

i

Figure 28: Entering the video output falensme.

ORIGINAL PAGE" IS
OF POOR QUALITY

60

w

_m=s

z

v

7.9.2 Example _2 : Displaying Real-Time Radar Images

on a Captured Video Image

1. Follow step 1 in Example #1, if necessary.

2. Execute the Real Time Data Processing Program (RTDP) [14].

3. After the RTPD program is running, and all parameters have been set,

click any mouse button on an open area of the screen until a VT102

window becomes vislble. P|ace the mouse cursor in the VT102 window

and execute 'xradar'.

4. Follow steps 2 and 3 in Example #1.

5. Select the 'REAL TIME DP' menu item and wait until a radar image is

displayed. Figure 29 shows the main screen after entering the real time

data processing mode. If scaling and alignment are necessary, click any

mouse button on the 'REAL TIME DP' item again to stop the radar

image acquisition. Use the displayed radar image to scale and align the

radar and video images, as described in Example #1. Select the 'REAL

TIME DP' item again to continue with the real-tlme display.

6. During real-time display, all of the menu items, such as switching display

modes and color maps, remain active and can be executed at any time.

Figure 30 shows the top view screen after selecting 'TOP VIEW - >

FULL SCREEN' menu item while in real time mode.

7. When radar image display is complete, exit the real-time mode by se-

lecting the 'REAL TIME DP' menu item again.

8. If desired, save the video images by selecting the 'WRITE VIDEO IM-

AGE FILE' menu item and entering a file name. Select the 'OK' item

on the sub-window to accept the file name and write the file.

9. Exit X-Radar by selecting the 'EXIT' menu item.

61

W

I

I

r
I

i

I

i

i

I

i

]---

II

I

Figure 29: Main screen after entering the RTDP mode.

OR.GINAL PAGE i$
OF POOR _ALI_

i

I

I

I

62
r
I

I

w

w

....IItAI) VIDIO linG! fill

w

Figure 30: Side view of aircraft test body during RTDP mode.

!

w

ORIGINAL PAGE' IS

OF POOR QUALITY

63

7.9.3 Example #3 : Displaying an ISAR image

1. Follow steps 1, 2 and 3 in Example #1.

2. Read the ISAR image file by selecting the 'READ ISAR IMAGE FILE'

menu item. Figure 31 shows the main screen after selecting the 'READ

ISAR IMAGE FILE' menu item, while Figure 32 shows an ISAR image

of an F4 aircraft read from a file after selecting 'TOP VIEW - > FULL

SCREEN' (the image data in this file has been padded to create the

black border and white background).The ISAR image should conform

to the file format listed in Appendix D. ISAR images cannot be scaled,

rotated or shifted, so this is all that can be done.

w

m

=_

I

m

D

I

64

L :

E !

L_

w

w

Figure 31: Main screen for ISAR file name entry.

r

O5

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS

OF POOR _MJALi1_

Fisure 32: ISAR image of an F4 aircraft.

66

===

Chapter 8

Conclusion

w

w

w

A hardware and software system for the display and analysis of radar images has

been described in this report. This system was designed to provide the user with a

versatile and efficient way to examine different types of radar images superimposed

on a video image of the actual target measured. This has been accomplished by

using a menu-driven software architecture to allow the user to easily control the

various hardware components of the system. In addition, since the software is

event-driven, adjustments (scale, shift and rotation) to the radar images can be

done interactively even in the real-time mode. This allows the user to make fine

adjustments to the images as the processing is being done, rather than having to

wait until processing is complete.

The capabilities of the system have surpassed the original goals. The system is

capable of displaying radar images in the real time mode at a rate of approximately

one every three seconds. In addition, images can be recorded on video tape, or

hardcopy can be produced on a color printer. The system provides the user with

complete documentation of each radar image produced and serves as a diagnostic

tool for the radar system.

The system has undergone extensive testing during development and has been

recently put into use in the compact range at the ElectroScience Laboratory. While

the original design goals have been exceeded, new areas of application and devel-

67

opment have becomeevident. Possibleareas for further development are in the

addition of features for interactively analyzing individual scattering centers, corre-

lating scattering centers in one view with scattering centers in the other view and

developing an isometric view of the video and radar images.

In addition, there are several parts of the software that could be improved.

While both the RTDP program and X-Radar are running, there is often a need

to actuate the RTDP menus. While this can currently be achieved by cycling

through the various windows being displayed (by using the mouse buttons), it

would be much more convenient if this could be achieved with only one mouse

event. This could be achieved if both the RTDP program and X-Radar were each

placed under an application shell widget; in other words, each program should

have an application shell widget which covers the entire screen as the upper-most

parent in the program. _

The real-time image display could also be improved. As written, each new radar

image requires that the entire video display be erased. A substantial improvement

in speed could be achieved if only the previous radar image could be erased. This

could be achieved by using the function XClearArea() for each scattering center

marker, and then letting the ExposeEvent event handier fill in the missing part of

the video image.

g

U

m
I

D

u

I

m

m

I

I

m

g

m

u

7

J

68
J

W

w

Appendix A

Programming the FG100V Video
Board

w

E

w

mmo

Programming the FG100V video board requires a complete understanding of the

way in which the XD-88 bus address space is organized, and an understanding

of the UTEK V system calls available to carry out virtual address space memory

mapping. The address space in the XD-88 is organized into two separate, but

related address spaces : the VME address space and the Futurebus address space.

The Futurebus is the internal system bus used by the system for disk I/O, CPU

interconnection and processing. The VME bus is used for interfacing the system to

the graphics sub-systems and 3rd-party vendor hardware [13]. The XD88 memory

space is organized as shown in Figure 33.

A.1 VME Protocol Address Spaces

The VME protocol specifies three different address spaces. VME 'standard' ad-

dress space requires a 24-bit address and hence can access up to 16Mbytes. VME

'short' address space only uses 16-bit addresses and so only addresses 64 Kbytes of

space. There is also VME 'extended' address space, which uses 32-bit addresses.

For many I/O purposes, the short address space Js sufficient and the standard and

extended address spaces are usually only used for devices which have large amounts

of memory. Which address space is being accessed is determined by a byte known

69

i

0xDFFFFFFF
0xDE000000

0xDC000000

0xDA000000

0xD8000000

0xD6000000

OxD4000000

0xD2000000

0xD0000000

0xCE000000

0xCC000000

0xCA000000

0xC8000000

0xC6000000

0xC4000000

0xC2000000

0xC0000000

_iL_i/J.'//,

St sna-ra (AMC 0Z39]

/////i./I//

Shor_ (JO_C 0z2t)

512_ window

from Futurebu_

on to the

Vl_:bus

The windo, ia

compriled of
16 tranllatlon

reglstera each
one of which

VH_bua space.
One register

may map all of
short or stan-

dard apace,

Futurebus Address Space_

0xFFFFFF

0x000000
16M

bytes

0xFFFF ___. 64K bytes
0x0000

0xlBFFFFFF

0xlA000000

0x18000000

0x16000000 vtes

0x14000000

0x12000000

0xl0000000
0xFFFFFFFF
0xFE000000

0x0DFFFFFF _ytes
0x0C000000

0x0A000000

0x08000000

0x06000000 ,tee

0x04000000

0x02000000

0x00000000 32M bytes

VMEbus Address Space T

m

i

i

i-

t

I

m

Figure 33: Memory organization in the XD88 Workstation.

as the Address Modifier Code (AMC). An AMC = 29 (hex) specifies the short

address space, an AMC = 39 (hex) specifies the standard address space and an

AMC = 0B (hex) specifies extended address space. The relationship between the

AMC, the Futurebus and VME address space is shown in Figure 34. The details

of how the user sets this byte will be described later in this chapter.

70

i

g

i

J

m

i

m

w

w

u

31 Futurebus Address 0

-2_i2_-2s1 24-0 .I
,................................._._.:_._..._,.._._.........

VMEbus space
•.x.:_Z

.." _:>;..:::::::_,A._::::::_,x:h,__:%_

.' ." I_____ _.-____. _

-IA ,

lOB#n

__!_ __}_.,_,_.

.:.>:.x.:.:.:.x:+x_.x.x.x_:.:_

w

Figure 34: Usage of the AMC to calculate the physical address of a VME device.

=

71

I

A.2 XD88 VME Device Address Space

The VME standard and short address spaces are mapped into two windows in

the Futurebus address space. VME extended address space is mapped onto the

Futurebus in 32Mbyte windows. The FG100V requires mapping into both the short

address space, for the control registers, and into VME standard address space, for

the video buffer memory.

Figure 35 shows the control register map for the FG100V [11]. Notice that all

registers are referenced as byte offsets from the base address. This is important

since the board only supports word transfers. This will effect what type of pointer

is used when accessing the control registers.

A.3 Shared Memory Initialization

VME address space is accessed in the XD-88 by mapping it into the real address

space of the machine. This is done by allocating 'shared memory', that is, mem-

ory shared between the user and the system. The allocation of shared memory

on the XD88 is reserved for superusers only. This means that a separate pro-

gram must run at the superuser level to initially allocate the memory and that

this program must also allow non-superusers to access the memory segment. The

program 'frame_init.c' is used to initialize shared memory for the FG100V video

board and is listed in Appendix B. The most important part of the code are the

define statements, which are reproduced in the partial listing below.

A.3.1 Listing 1 -- SHM_INIT.C

#defLue REG_PHYS_ADDR OxO /* Physical address of control regs.*/

#define MEH_PHYSADDR OxAO0000 /* Physical address of video memory */

#define REG_REGION_SIZE Ox2000 /* size of reg. region in bytes */

#define HEN_REGION_SIZE OxlO0000 /* size of mem. region in bytes */

#define REG_KEY OxlO00 /* key for reg shm */

#define MEM_KEY OxlO01 /* key for mem shm */

72

I

I

g

m

l

mm

I

l

I

g

w

#define SHMFLAG (IPC_PHYS J

IPC_CREAT I

IPC_WOCLEA_ I

IPc_ci I

0777) /* define shared =emery flags */

#define REG_PHYS_SPACE (PHYS_VME [

PHYS_VME_SHORT I

PHYS_VME_DATA)

#define MEM_PHYS_SPACE (PHYS_VME [

PHYS_VME_STD [

PHYS_VME_DATA)

/* AMC for control regs.*/

/* ANC for frame buffer */

A.3.2 Explanation of Listing #1

A complete description of each of the define statements and the initialization code

follows below :

1. REG_PHYS_ADDR and MEM_PHYS_ADDR define the physical addresses

of the control registers and the frame buffer memory. As noted in the listing,

there is a bug in the function shmget() which requires defining the control

register physical address as 0000 (hex) and adding an offset to get the actual

physical address. The addition of the offset is not done in the initializa-

tion program, but instead is handled in the actual FG100V functions. The

shmget() function seems to work normally when mapping the address for the

frame buffer memory, and the physical address defined for it, A00000 (hex),
is correct.

2. REG_REGION_SIZE and MEM_REGION_SIZE define the amount of mem-

ory in bytes that is needed for the control registers and the frame buffer

memory respectively.

3. REG_KEY and MEM_KEY are the most important defines here. These

values allow other processes to access the memory areas allocated by this

program, and therefore, these values must be known to other applications

that wish to use the space and the FG100V video board.

4. SHMFLAG defines a set of bit flags passed to the shmget() function. The

exact details of each flag will not be explained, so unless the actions of a

specific flag are in question, the values listed here should be used. The

values of the flags are defined in the UTEK system header file 'ipc.h' .

5. REG_PIIYS_SPACE and MEM-PHYS-SPACE define a set flags which define

the complete AMC used for each mapped area. The flags are defined in

the header file 'shmphys.h', but are fairly self-explanatory. The define for

REG.PtIYS_SPACE should be used as shown when mapping an I/O device

73

to VME short address space and the define for MEM_PHYS_SPACE should

be used as shown when mapping a device to stmldard address space.

The remainder of the initialization program is fairly simple. After turning off

signaling for bus errors (a good idea while debugging code for VME bus devices),

address space for the control registers is allocated. The shmget() function returns

an ID number for the memory space, if an error doesn't occur. Errors are trapped

to a fatal exit after printing a description of the error.

Next, the memory area for the control registers is set to allow access by non-

superuser applications. The structure of type shmBusTable is defined in the UTEK

V system header file 'shm.h' and is used to pass information about the shared

memory area to the function shmctl(). This function performs a number of different

functions and is outlined fairly well in Reference [12]. Here it is used to set the flag

SHMPHYS_ALLOW so that the memory space can be accessed by any application.

Again errors are trapped to a fatal exit after printing an error message and freeing

the memory allocated by the previous shmget().

The previous instructions are repeated for the frame buffer memory space.

Again note that before exiting due to an error, previously allocated space is freed.

This is done because the allocations are permanent, and are not freed just because

an error occurred. These allocations are only deleted from the memory manage-

ment table by a free() instruction or at power-down.

This completes the initial allocation of shared memory space for a VME device.

The next step is to attach a process to the memory space which has been allocated.

A.4 Shared Memory Attachment in X-Radar

The application is 'attached' to the previously allocated virtual memory space

through the same system calls used to allocate the memory. However, since the

same allocation 'key' is used, the system does not re-allocate the space, but sim-

ply returns an identification number for use by the application. The function,

m

i

i

m

I

I

m

l

m

74 J

w

r

w

w

w

w

w

w

ITI-Jnit(), used to attach the allocated virtual memory space to X-Radar is listed

in Appendix B, module 'xframe.c'.

Again, the define statements are very important, and are listed in Appendix B,

module 'radar.h'. They are virtually identical to the define statements in the

initialization program in Appendix B. It is extremely important that the values of

REG_KEY and MEM_KEY are the same in both, as this is the mechanism used

to associate the previously allocated memory space with the application. Also, it

is important that the amount of memory requested in the application program be

the same or less than the amount allocated in the initialization program.

The main part of the attachment function is very similar to the initialization

program. Following the declarations of variables and again turning off bus error

signalling, the shmget() function is called to get an ID number. However, since

this portion of memory has already been allocated, the ID number returned is the

same one returned by shmget() in the initialization program. Now, the function

shmat() is used to attach the ID number to this application. As in tile initializa-

tion program, any time a fatal error occurs, the application must 'clean up' the

environment before exiting. In this case however, the function shmdt() is used to

detach the application from the allocated memory._Note that this does not free

tile memory, it just releases the application from the memory management table.

The value returned by shmat() i_s a pointer to the beginning of the shared

memory space. In the case of the control register memory space, this pointer

points to the address of tlie first control register, and other control registers can be

accessed by adding the appropriate offset to the pointer. The same is true for the

frame buffer. The pointer returned by the corresponding call to shmat() points to

the beginning of the frame buffer.

One of the problems encountered during the development of this code was

the type declarations for the various pointers. Since the board only supports

word addressing, the pointers must be declared as 'shorts', which are 16-bit words.

75

W

However, the offsets for the control registers are specified in bytes, so all the offsets

listed in the FG100V user's manual [11] must be divided by two to get the offset

in words.

A.5 FG100V Control Software

With the required memory mapping established, the FG100V can be controlled.

Control of the board entails setting particular control registers in a particttlar

sequence to accomplish the required process. The functions written to control the

FG100V are listed in Appendix B, module 'xframe.c', and are outlined here.

1. write_register() : A function to write a data value to a FG100 control register.

Notice that the register offset is divided by 2. As mentioned previously, this

is because the register offsets are given in bytes, but the FG100 only accepts
word addresses.

2. read-register() : A function to read the value of an FG100 control register.

Again, the register offset is divided by 2 for the same reason as mentioned

above.

wait_vb() : This function waits for a vertical blanking period in the video

signal. This is necessary in order to insure that the FG100 grabs a complete
frame.

ITI_init() : As discussed previously, this function is used to attach X-Radar

to the previously allocated shared memory spaces. It also sets tile FG100

control registers to default values. A series of write_reglster() calls at the end

of the function set these default values and are explained in the comments.

5. ITI_lut() : This function initializes the FG100 hardware color look-up ta-

bles. The FG100 has up to 16 different look-up tables, but for this simple

application, only four are used : one each for RED, GREEN, and BLUE and

one for the intermediate look-up table. In this application, all the look-up

tables are configured as linear ramps, and the intermediate look-up table is

installed between the camera and the video A/D converter.

6. ITI_frame() : This function grabs a frame of video and displays it on the

screen. There are two things that the function must do : first, it must

wait for a vertical blanking period so that a complete frame is digitized,

and Secondly, :it rnust wait for=any previous Command to ter_nate. The

wait_vb()function accomplishes the flrs t__the second being accomp!ished by

the while() statement in line 6. At this point, the camera selected is used to

3.

4.

76

U

!

W

i

m

W

B

m

m

m

wE
J Z

mr

z

w

=

w

2

w

L

7,

o

o

set the data to write tolhe FGl00in order to initiate the frame grab. Finally,

the function waits for the frame grab to complete. The remaining part of

the code reads the video data from tile FG100V and forms and displays the

video image on the XD88. The code checks whether X-Radar is displaying

both the top and side view or just one or the other and then displays the

video image in appropriate window on the screen.

ITI_cont() : This function simply puts the FG100 in the continuous acqui-

sition mode so that the video signal from the cameras can be viewed in

real-time on the external system monitor. This is useful for Migning the

cameras and monitoring the target in the compact range chamber.

ITI_cam() : This function switches between the two cameras as the current
video source.

ITI_close() : This function simply releases the shared memory attachment of

X-Radar. Tiffs function is only called on exiting the application.

w

z

w

w

77

w

W

g

U

REGISTER BASE.DRESS +

0

2

4

6

8

A

C

E

i0

12

14

16

18

IA

IC

IE

MEMORY ACCESS CONTROL

HOST MASK

VIDEO ACQUISITION MASK

PIXEL BUFFER REGISTER

X POINTER

Y POINTER

POINTER CONTROL

CPU ADDRESS CONTROL

X SPIN CONSTANT

Y SPIN CONSTANT

PAN A

LOOKUP TABLE CONTROL

SCROLL A

BOARD STATUS/CONTROL

ZOOM CONTROL

FRAME MEMORY DATA PORT

m

m

l

I

Figure 35: FG100V control register map.

l

W

m

g

78
j

w

Appendix B

Listing of X-Radar

• i

LJ

w

w

w

B.1 Program ITI_init.c

/*

* This program sets up shared memory management for FGIO0 frame grabber.

*/
#include <etdio.h>

#include <siEnal.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/io/sh_phy_,h>

#define REG_PHYS_ADDR OxO /* Physical address of control regs. */

#define MEM_PHYS_ADDR OxAO0000 /* Physical address of video memory */

#define REG_REGION_SIZE Ox2000 /* size of reg._region in bytes */

#define MEM_REGION_SIZE Ox100000 /* size of mem. region */

#define REG_KEY OxlO00 /* key for reg shm */

#define MEM_KEY Ox1001 /* key for mem shm */

#define SHMFLAG (IPC_PHYS] IPC_CREAT] IPC_NOCLEAR I IPC_CI I 0777)

#define REG_PHYS_SPACE (PHYS_VMEIPHYS_VME_SHORTIPHYS_VME_DATA)

#define NEM_PHYS_SPACE (PHYS_VNE[PHYS,VMESTDIPHYS_vME_DAT_)

extern int errno;

extern char *sys_errlist [] ;

main()

int shmid_reg,shmid_mem;

struct shmBusTable addr;

char *shmat();

sIEnaI(SIGBUS,SIG_IGN);

/* set up shared address space for control registers */

if ((shmid_reg = shmget(REG_KEY,

REG_REGIO__SIZE,

SHMFLAG,

REG_PHYS_ADDR,

REG_PHYS_SPACE)) < O)

79

I

fprintf(ltderr,

"Error allocating shared memory for control registers\n");

fprintf(etderr,"sl_gat: errno: _d,_s\n",

errno,sym_errlist[errno]);

exit(l);

}

addr.mtart = (caddr_t)REGPHYS_ADDR;

addr.length = REG_REGION_SIZE;

addr.apace = REG_PHYS_SPACE;

addr.uid _ O;

addr.gid z O;

addr.perm = OTTT;

/*

* Allow non-superuser applications to use the space.
*/

if(ehmctl(ehmid_reg,SHMPHYS_ALLOW, kaddr) != O)

<

fprlntf(stdarr,"mhmctl: _d _s\n",errno,sys_errliet[errno]);

exit(1);

/*

* Open VME standard Ipace for frame buffer
*/

if ((ahmld_mem c ehmget(MEM_KEY,

MEM_REGION_SIZE,

SHMFLAG,

MEM_PHYS_ADDR,

MEM_PHYS_SPACE)) < O)

<
fprintf(stderr,

"Error allocating shared memory for video memory\n");

fprintf(stderr,"shmget: _d -- %s\n",

errno,mym_errlimt[errno]);

exit(l);

addr.mtart = (caddr_t)MEM_PHYSADDR;

addr.length = MEM_REGION_SIZE;

addr.mpace = MEM_PHYS,SPACE;

addr.uid = O;

addr.gid = O;

addr.perm = 0777;

/*

m Allow non-superuser applications to use the space

*/
if(,hmctl(mhmid_mem, SHMPHYS_ALLOW, kaddr) .=' O)

<

fprintf (mtderr,"shmctl : %d %s\n", errno, mys_errliat [errno]) ;

exit(1);
}
exit(0);
}

w

J

m

m

J

m

m

g

g

I

E

I

W ?

i i

m

8O

w

m

w

B.2 Program xradar

B.2.1 Module xrdr.c

/*

* This is the main source file for the compact range image

* display program.

*/
#include "radar.h" /* includes all X includes */

extern void RePaint();

extern void ITI_init();

extern int ClearRadarData();

/*** ALL Global variables are defined in this module ***/

/* GLOBAL X STUFF */

XImage *iml, *im2,*im3, *im4; /* image vars. for video images */

Display *display;

Colormap cmap;

GC gel, /* GC for all image display */

gc2; /* GC for cross hairs */

XFontStruct *font,font2;

Widget toplevel, top2, shelll,

shell2, shellS,

shell4,

winwidgetl, winwidget2,

winwidget3, winwidget4,

popfilel, popfilela, popfile2,popfileS,

error_popup, popmove, exit_message,

scalepopl, scalepop2,

buttonl, button2, buttonS,

button4, buttonS, button6,

buttonT, button8, button9,

buttonlO,buttonll,buttonl2,

buttonlS,button14,buttonlS,

buttonl6,buttonlT,

box, color_scale, mono_scale,

levl;

/** Globals for positions and sizes of graphics window widgets **/

int gxposl,gxpos2,gxposS,gxpos4;

int gyposl,gypos2,gyposS,gypos4;

int xsize,ysize;

tmsigned long cols[256];

unsigned long monocols[256];

unsigned long fore, back;

unsigned long red,white,blue,black;

/*** Globals for multiple screen manipulation ***/

int scrnl_flag = O; /* flag set if full screen side view */

int scrn2_flag = O; /* flag set if full screen top view */

Boolean isar_flag = False; /* flag set if ISAR image display */

81

* radar_dat aEiJ

* radar_data [i]

* radar_dat a[i]

* radar_data [i]

* radar_data[i]

*/

Boolean mono = False; /* flag set if using mono colormap */

gtdget_atruct w_recl, w_rec2;

/** Clobals for radar images ***/

/*

* array to hold radar image data.

* structure as follo_s:

. radar_data[i] [0] = x coord, of ith scattering center

[1] = y coord, of ith scattering canter

[2] = z coord, of ith scattering center

[3] = magnitude of ith scattering center

[43 = spars
[51 = spare

float radar_data[IMAGE_P_TS3 [6_ ;

int num_pnts = O;

float in_angle = 0.0; /* incident angle of radar signal */

Boolean vidl_flag = False; /* true if top view in system */

Boolean vid2_flag = False; /* true if side view in system */

rubber_band_data rb_data; /* structure for rubber band lines */

cursor_data cur_data; /* structure for full screen cursor */

line_data l_data; /* structure for rotationn cursor */

char xscale,str[lO_, /* strings to hold-scale dimensions */

_scalel_str [10_,

yscale2_str [10_,

zscale_str [10] ;

float x_scale = 512./96. ; /* default scale factors */

float yl_scale = 512./96.;

float y2_scale = 512./96;

float z_scale = 512./96.;

int X,dlm, yl,dlm,

y2_dim, z_dim; /* # of pixels for scaling */

Int x_offset : O; /* offsets for adjusting radar image */

int yl_offset : O;

int y2_offset = O;

int z_offset = O;

float xy_angle = 0.0; /* rotation angles for radar image */

float yz_angie -- 0.0;

int horizontal_flag; /* flag : True = setting horiz, scaling */

/** GLOBAL FILE STUFF **/

char bufferl [80_, bufferla[80], buffer2 [80] ;

FILE *fd_mapfile;

uneiEned char *vidrayl, *vidray2, *isarl, *isar2; /* pointers to ra, data */

unsiEned char *Imagel , *Image2; /* pointers to image data */

unsigned char *BigImagelp *BigImage2; /* pointers to image data */

**
main(argc,argv) --- _ - :_
int argo; _

char *argv [3 ;

/* sat defsuit image sizes and locations ./ _

xstze : 512;

/* number of points in current radar image */

82

m

w

m

u

w

u

w

m

ysize = 480;

gzposl = O;

gyposl = O;

gxpos2 = 512;

gypos2 = O;

gxpos3 = O;

gypos3 : 512;

gxpos4 = O;

gypos4 = O;

/* prepare everything in startup routine ,/

initialize();

/* setup user interaction */

xinteract();

/* loop for events */

XtNainLoop();

/*end main()*/

/* initialize -- does general initialization */
initialize()

Arg arg[103 ;

int mapchars, bitmap_pad;

11nsigned int depth;

mapchars = 512 * 612;

/*

• Allocate memory /or raw data arrays.

,/

if(!(vidrayl

!(vtdray2

[(isarl

!(lear2

(

= malloc(mapchaxs)) II

= malloc(mapchars)) II

= malloc(mapchars)) II

= malloc(mapchars)))

printf("Unable to allocate memory for data arrays...\n");

exit(-1);

}
/* allocate memory for small image data arrays */

if(!(Imagel = malloc(2*mapchars)) II

I(Image2 = malloc(2*mapchars))) /* 2x for 12 bit depth */

printf("Unable to a11ocate memory for small image arrays..._n");

ezit(-1);

)
/* allocate memory for big image data arrays */

if(!(Biglmagel = malloc(2*4*mapchars)) rJ

!(Biglmage2 = malloc(2*4*mapchars)))

printf("Unable to allocate memory /or big imags arrays...\n");

exit(O);

clear_array(vidrayl,mapchars); /* clear arrays */

clear_array(vtdray2,mapchars);

w

83

clear_array(Isarl,mapchars);

clear array(isar2,mapchars);

clear_array(Imagel,2*mapchars);

clear_array(Image2,2*mapchars);

clear_array(BigImagel,2*4*mapchars);

claar_array(BigImage2,2*4*mapchars);

ClearEadarData(); /* clear radar data array */
/*

* create toplevel shell for the main menu and an application shell

* for graphics widgets

*/

toplevel = Xtlnitialize(WUEL,"X-Radar",

NULL, O,

MULL, NULL);

top2 = XtCreatelpplicationShell("Windows",topLevelShellWidgetClass,

NULL.O);

XtSetArg(arg[O]. XtNx. 0);

XtSetArg(arg[1]. XtSy. 0);

X_SetArg(arg[2]. XtSwidth. 1024);

XtSetArg(arg[3], XtNheight,iO24);

XtSetArg(arg[4]. XtNtransient. True);

XtSetArg(arg[S], XtNallowShellResize, False);

XtSetValues(top2.arg.6);

XtRealizeWidget(top2);

/*

, Now that top2 is realized, create colormap and a graphic

* context based on it.

*/

display = XtDisplay(top2);

cmap = XCreateColormap(display,DefaultRootWindow(display),

DefaultVisual(display, DefaultScreen(display)),

_llocAll);

cmap = XDefaultColormap(display, DefaultScreen(display));

XInatallColormap(display,cmap);

BuildColorMap2();

BuildMonoColormap();

XSetWindowColormap(XtDisplay(top2),XtWindow(top2),cmap);

8cl = XCreateGC(display,DefaultRootWindow(display),0,0);

fore = XBlackPixel(diaplay.DefaultScreen(display));

back = XWhitePixel(display.DefaultScreen(display));

XSetBackground(display.gcl.fore);

XSetForeground(display.gcl.back);

/* Now. let's define some useful colors */

red = cols[24S];

blue = cols[I30];

white = back;

black = fore;

/*

* create popup shells for graphics widgets

XtSetArgCarg[O], XtNx, 8xpost);

84

m

m

I

D

i

I

i

m

i
!

I

q

B

L_

=

w

w

L

J

w

w

XtSetArg(arg[l], XtNy, gyposl);

XtSetArg(arg[2], XtNallowShellReslze, False);

XtSetArg(arg[3], XtNgeometry, "512x512");

shelll = XtCreatePopupShell("Window1",translentShellWidgetClase,

top2,arg,4);

XtSetArg(arg[O], X_Nx, gxpos2);

XtSetArg(arg[1], XtNy, gypos2);

XtSetArg(arg[2], XtNallowShellResize. False);

XtSetArg(arg[3], XtNgeometry, "612x512");

Ihell2 = XtCreatePopupShell("Window2",transientShellWidgetClass,

top2,arg,4);

XtSetArg(arg[O], XtNx, gxpos3);

XtSetArg(arg[1], XtNy, gypos3);

XtSetArg(arg[2], XtNallowShellResize, False);

XtSetArg(arg[3], XtNgeometry, "1024x512");

shell3 = XtCreatePopupShell("Window3",transientShellWidgetClass,

top2,1Lrg,4);

XtSet_urg(arg[O], XtNx, gxpos4);

XtSetArg(arg[1], XtNy, gypos4);

XtSetArg(arg[2], XtNalloeShellResize, False);

XtSetArg(arg[3], Xtegeometry, "I024xi024");

shell4 = XtCreatePopupShell("Window4",traneientShellWid6etClaes,

top2,arg,4);

/*

create core widgete to go in the popup shells.

* Note that foreground and backgound colors are reversed so

* that the normal state of the windows Is black.

*/

/* .indo.1 and .indow2 are 512 x 512 */

XtSetArg(arg[O], XtNx, 0);

XtSetArg(arg[1], XtNy, 0);

ZtSetArg(arg[2], XtNwidth, xsize);

XtSetArg(arg[3], XtNheight , ysize);

XtSetArg(arg[4], XtNbackground, fore);

XtSetArg(arg[5], XtNforegrotund, back);

wineidgetl = XtCreateManagedWidget("Windowl",widgetClass,

shelll,arg,6);

XtAddEventHandler(elneldgetl, ExposureMask, FALSE, RePalnt,NULL);

XtSetArg(arg[O], XtNx, 0);

XtSetArg(arg[1], XtNy, 0);

XtSetArg(arg[2], XtNwidth, xslze);

XtSetArg(arg[3], XtNhelght, yslze);

XtSetArg(arg[4], XtNbackground, fore);

XtSet#_rg(arg[5], XtNforeground, back);

einwidget2 s XtCreateManagedWidget("Window2",eidgetClass,

ahell2,s.rg,6);

XtAddEventHandler(etnwtdget2, ExposureMask, FALSE, RePaint, _ULL);

/* etndoe3 is 1024 x 512 */

XtSetArg(arg[O], XtNx, 0);

XtSetArg(arg[1], XtNy, 0);

XtSetArg(arg[2], XtNwidth, 2*xsize);

85

XtSetArg(arg[3], XtWheight, ysize);

XtSetArg(arg[4], XtNbackground, Sore);

XtSetArg(arg[8], XtNfore6round, back);

winetdget3 = XtCreateManaEedWidget("Window3",widgetClass,

ahell3targ,fl);

XtAddEventHandler(wtnwidget3, ExposureMask, FALSE, RePaint, NULL);
/* window4 is 1024 x 1024 */

XtSetArg(arg[O], XtNx, 0);

XtSetArg(arg[1], XtNy, 0);

XtSetArg(arg[2], XtNeidth, 2*xslze);

XtSetArg(arg[3], XtNheight, 2*ysize);

XtSetArg(arg[4], XtNbackground, Sore);

XtSetArg(arg[8], XtNfore_round, back);

eineidget4 = XtCreateManagedWidget("Windoe4",eidgetClass,

ehell4,arg,6);

XtAddEventHandler(winmidget4, EzposureNask, FALSE_

RePaint, NULL);

/*

* allocate structures to hold images ;

* iml, im2 For multi-screen display;

* im3 and im4 For single-screen display.

*/
depth = XDefaultDepth(display,DefaultScreen(display));

bitmap_pad = 8;

iml = XCreateImage(display, DefaultVisua1(display,

DefaultScreen(display)),

depth, ZPixmap, O, Image1, xsize,

ysize, bitmap_pad, xsize*2);

if(iml=:O)

{

printf("illocation of structure For image #I failed.\n");

exit(O);

}
im2 = XCreatelmage(display, DefaultVisual(display,

DefaultScreen(display)),

depth, ZPixmap, O, Image2, xsize,

yaize, hi,map_pad, xaize*2);

if(im2==O)

{

printf("A11ocation of structure For image #2 failed.\n");

axlt(O);

Im3 = XCreateImage(display, DefaultVisual(display,

DefaultScreen(dieplay)),

depth, ZPixmap, O, Biglmagel, 2*xsize,

2*ysize, bitmap_pad, xsize*4);

if(im3==O)

{

printf("Allocation of structure for image #3 failed.\n");

exit(O);

B

I

m

i

I

m

g

m

m

}

im4 = XCreateImage(display, DefaultVisual(dieplay,

DefaultScreen(dieplay)),

depth, ZPixmap, O, BigImage2, 2*xsize,

2*yeize, bitmap_pad, xeize*4);

if(im4==O)

printf("Allocation of structure for image #4 failed.\n");

exit(O);

}
ITl_init(); /* init. video board */

} /*end initialize()*/

**

BuildColorMap2()

(
int numcolors;

XColor defs[MAXCOLORS];

int i,j;

numcolore = XDieplayCells(display,DefaultScreen(display));

for(i=O; i<MAXCOLORS/2; i++)

(

defs [i] .red =

defs[i] .green =

defs [i] .blue = (i+I).612 - I;

defe[i].flags = DoRed [DoGreen [DoBlue;

if(!XAllocColor(dieplay,cmap,&defs[i]))

(

printf("Unable to allocate color #_d\n",i);

exit(-%); /* exit */

}

cole[i] = defe[i].pixel;

}
for(i=MAXCOLORS/2+l;i<lTO;i++)

(

defe[i].red = O;

defe[i].green = O;

defe[i].blue = (i+85),512;

defe[i].flags = DoRed [DoGreen [DoBlue;

if(!XAllocColor(display,cmap,kdefs[i]))

printf("Unable to allocate color #_d\n",i);

exit(-1);

}

cole [i] = defe [i3 .pixel ;

}

for(i=iTO;i<212;i++)

(

defe[i].red = O;

defs[i].green = (i+43)'612;

defe[i].blue = O;

defe[i].flags = DoRed I DoGreen [DoBlue;

87

if (:XkllocColor (display, cmap ,kdef s [i]))

{

printf("Unable to allocate color #7,d\n",i);

exit (-1) ;

}

cole[i] = defs[iJ.pixel;

}

for(i=212;i<2SS;i++)

{

defs[i].red = i.512_

defs[i].green = O;

defs[i] .blue = O;

defs[i].flags = DoRed _ DoGreen I DoBlue;

if ('XAllocColor (display, cmap, kdef s [i]))

{

printf("Unable to allocate color #7,d\n",i);

exit (-1) ;

}

cole[i] = defs[i] .pixel;

}

}
/,

* function to build monochrome color map for images

*/

BuildMonoCol ormap ()

{

int numcolors ;

XColor defs[MAXCOLORS] ;

int i,J ;

numcolors = XDisplayCells (display,DefaultScreen(display)) ;

for(i=O; i<MAXCOLORS/2; i++)

{

defs [i] .red =

defs[i] .green =
defs[i].blue = (i+I).512;

defs[i].flags = DoRed I DoGreen I DoBlue;

if ('XAllocColor (display, cmap, kdef s [i]))

{

printf("Unable to allocate color #7,d\n",i);

exit(-1); /* exit */

}

monocols [i] = defs [i] .pixel ;

}
for(i=MAXCDLORS/2+I; i<MAXCOLORS; i++)

{

defs [i] .red =
q

defs[i] .green =

defe [i] .blue = 512.(i-127) - i;

defs[i] .flags = DoRed I DoGreen I DoBlue;

if (!XAllocColor (display, cmap,kdefs [i]))

{

88

I

m

m

I

i

m

m

B

m

u

J

I

=

w

wm_

m

w

W

w

printf("Unable to allocate color #_d\n",i);

exit(-1); /_ exit _/

}
monocole [i] = defs [i] .pixel ;

}
}

B.2.2

/*

*/

Module xinterface.c

xin_erface.c

File contains source code for initializing the widgets and defining

callback functions for the X-RADAR program.

#include "radar.h" /* inlcudes all X includes */

Widget create mag_scale();

/* external function declarations */

extern void exit();

extern void pop_down();

extern void multi_screen();

extern void single_screen();

extern Widget CreateTextWidget();

extern Widget CreateErrorWidget();

extern Widget CreateMsgWidget();

extern Widget CreateScaleWidget();

extern void BuildColorMap();

extern int read video_file();

extern int read radar_file();

extern void create_rubber_gc();

extern void start_rubber_band();

extern void track_rubber_band();

extern void end_rubber_band();

extern void init_cursor();

extern void track_cursor();

extern void end_cursor();

extern void init_line();

extern void track_line();

extern void end_line();

extern void ITI_cont();

extern void ITI_frame();

extern void ITI_camera();

extern void image_loop();

/* external global variable declarations */

extern XImnge *iml, elm2, elm3, *im4;

externDisplay *display; _

extern Colormap cmap;

extern GC gcl;

extern XFontStruct *font,*font2;

extern Widget toplevel, top2, shelll,

shell2, shell3,

shell4,

89

winwldgetl, wlnwldget2,

winwidget3, wlnwidget4j

popfilel.popfilela,popfile2,

popfileS.popmeve,

scalepopl, ecalepop2,

box,error_popup, exit_message,

image_message,

buttonl,button2,

buttonS,button4,

buttonSmbutton6,

buttonT,buttonS,

button9,buttonlO,

buttonll,buttonl2m

buttonlS,button14,

buttonl5,buttonl6,

buttonlT,

color_scale, mono_scale;

extern float radar_data[IHAGE_PNTS][6];

extern int gxposl,gxpos2,gxpos3,gxpos4;

int gyposl,gypos2,gyposS,gypos4;

int xsize,yslze;

long cola[3;

long monocols[];

int fore,back;

red,white,blue,black;

scrnl_flag, scrn2_flag;

vidlJlag,vid2_flag;

isar_flag;

mono;

rubber ba_d_data rb_data;

cursor_data cur_data;

line_data l_data;

widget_struct w_recl, w_rec2;

unsigned int

tnt

Boolean

Boolean

Boolean

extern

extern

exterll

extern

extern

extern

extern

extern

extern

extern

extern

extern

extern

axtern

extern char xscale_etr[lO],yscalel_str[10],

yscale2_str[10],zscale_str[10];

extern float . x_scale,yl_scale,y2_scale,z_scale;

extern float xy_angle, yz_angle;

extern int x_dim, yl_dim, y2_dim, z_dim;

extern int x_offset,y_offset,z_offset;

extern char buffer1[80], bufferla[80], buffer2[8OJ;

extern FILE *fd_mapfile;

extern char *vidrayl, *vidray2, *isarl, wiser2, *Image1, *Image2;

extern char *Biglmagel, *Biglmage2;
/* CALLBACK FUI_CTIONS */

void VideoFileIn(w, client_data, call_data)

Widget w;

caddr_t client_data, call_data;

{

char *file_name;

char top_file[80], 8ida_file[80];

90

= =
I

g
I

i

I

I

I

I

I

i

i

r

w

w

file_name = (char *)client_data; /* get base file name */

etrcpy(top_file,file_name); /* save to array */

strcpy(side_file,file_name);

strcat(top_file,"_top"); /* append view */

strcat(side_file,"_side"); /* to file name */

if(read_video_file(top_file,vidrayl)) /* read top view */
{

vid1_flag = True;

CreateImage(vidrayl,iml,xsize,ysize);

CreateImage(vidrayl,im3,2*xsize,2*ysize);

if(scrnl_flag) /* in single screen mode */

{

XPutImage(XtDisplay(winwidget4).XtWindow(winwidget4),

gcl,imS,O,O,O,O,2exsize,2*ysize);

XFlush(XtDisplay(winwidget4));

}

else if(!scrn2_flag) /* in multi screen mode */

{

XPutlmage(XtDisplay(winwidgetl),XtWindow(winwidgetl),

gcl,iml,O,O,O,O,xsize,ysize);

XFlush(XtDisplay(winwidgetl));

}
}

if(read_video_file(side_file,vidray2)) /* read side view */
{

vid2_flag = True;

Createlmage(vidray2,im2,xsize,ysize);

CreateImage(vidray2,im4,2ixsize,2*ysize);

if(scrn2_flag) /* in single screen mode shoeing #2 */

{

XPutImage(XtDisplay(winwidget4),XtWindow(winwidget4),

gcl,im4,0,O,O,O,2*xsize,2*ysize);

XFlush(XtDisplay(winwidget4));

}

else if(!scrnl_flag) /* in multi screen mode */

{

XPutImage(XtDisplay(winwidget2),XtWindow(winwidget2),

gcl,im2,0,O,O,O,xsize,ysize);

XFlush(XtDisplay(winwidget2));

void VideoFileOut(w, client_data, call_data)

Midget w;

caddr_t client_data, call_data;

{
char *file_name;

char top_file[80], side_file[80];

file_name = (char *)client_data;

/*

91

w

u

* build filenames for both views

strcpy(top_file ,file_name) i "

strcpy (side_file, f ile_name) ;

st rcat (top_f ile, "_top'') ;

strcat (side_f ile, "_side") ;

/*
decide if two views exist and write the ones that do

*/

if (vid1_flag)

write_video_file (top_file, vidrayl) ;

if (vid2_fla_)

write_video_f ile (side _file, vidray2) ;

)

void RadarFileIn(w, client_data, call_data)

Widget w;

caddr_t client_data, call_data;

(

char *file_name;

isar flag = False;

file_name = (char *)client_data;

if(read_radar_file(file_name,radar_data))

AddRadarImage(iml);

AddRadarlmage(im2);

AddRadarImage(im3);

AddRadarImage(im4);

)
)

void IsarFileIn(., client_data, call_data)

Widget w;

caddr_t client_data, call_data;

char *filename;

lear_flag = True;

filename = (char *)client_data;

if(readvideo_file(filename,isarl))

£ddIsarIma_e(vidrayl,isarl,xsize,ysize);

void switch_screen(w, closure, call_data)

Widget w;

caddr_t closure, call_da_a;

static Arg args[10_;

if(!scrnl_flag %_ !scrn2_flag)

if(w == buttonl)

/* in multi screen mode */

/* screen I to full screen */

92

m

m

m

m

m

m

g

m

g

W

w

m

m

r_

W

=
W

L

W

=

--=

W

W

0 ,

XtSetArg(args[O],XtNla_el," MULTI - SCREEN MODE '°);

XtSetValues(.,args,1);

eingle_ecreen(im3);

AddRadarlmage(im3);

ecrnl_flag = TRUE;

}

if(w == button2) /* screen 2 to full ecreen */

XtSetArg(args[OJ,XtNlabel," MULTI - SCREEN MODE ");

XtSetValues(e,args,1);

eingle_ecreen(im4);

AddRadarImage(im4);

ecrn2_flag = TRUE;

else if(semi_flag) /* screen1 is full screen */

if(w == buttonl) /* going to multiecreen mode */

XtSetArg(args[O],XtNlabel," WI_rDOWI -> FULL SCREEN ");

XtSetValuee(w,args,1);

multi_screen();

AddRadarImage(iml);

AddRadarlmage(im2);

ecrn2_flag = FALSE;

}

ifCw == button2) /* going to screen2 full screen */

XtSetArg(args[O],XtNlabel," MULTI - SCREEN MODE ");

XtSetValues(w,args,1);

XtSetArg(args[O],XtNlabel," WINDOW1 -> FULL SCREEN ");

XtSetValues(buttonl,args,1);

eingle_ecreen(im4);

AddRadarlmage(im4);

ecrn2_flag = TRUE;

}

ecrnl_flag = FALSE;

}

else if(scrn2_flag) /* ecreen2 is full screen */

if(w == button1) /* going to screen1 to full screen */

XtSetArg(args[O].XtNlabel," MULTI - SCREEN MODE ");

XtSetValuee(w,args,1);

XtSetArg(args[O],XtNlabel," WINDOW2 -> FULL SCREEN ");

XtSetValues(button2,arge,1);

eingle_ecreen(im3);

AddRadarlma6e (is3) ;

ecrnl_flag = TRUE;

}
if(e == button2) /* going to multi-screen mode */

93

w

(

XtSetArg(args[O],XtNlabel,

XtSetValues(w,args,1);

multi screen();

AddRadarImage(iml);

AddRadarlmage(im2);

scrni_flag = FALSE;

}

scrn2_flag = FALSE;

}

}

" WIWDOW2 -> FULL SCREEN "); :

void switch_maps(w,client_data,call_data)

Widget w;

caddr_t client_data,call_data;

(

static Arg args[lO];

if(mono) /* change flag and menu button */

(

mono = False;

XtSetArg(args[O],XtNlabel," SWITCH TO MONOCHROME ");

XtSetArg(args[1],XtNwidth,24S);

XtSetValues(w,args,2);

XtPopdown(mono_scale);

XtPopup(color_scale,XtGrabNone);

}

else

mono = True;

XtSetArg(args[O],XtNwidth,245);

XtSetArg(args[l],XtNlabel," SWITCH TO COLOR ");

XtSetValues(w,args,2);

XtPopdown(color_scale);

XtPopup(mono_scale,XtGrabNone);

}

XSync(display,O);

/*

* _ow, build and display new images

*/

if(!scrnl_flag && !scrn2_flag) /* in single screen mode */

WriteMessage("Please wait, this will take awhile...",

XtWindow(winwidgetl),6,60$,white);

wise

WriteMessage("Please wait, this will take awhile...",

XtWindow(winwidget4),3OO,1020,white);

CreateImage(vidrayi,iml,xsize,ysize);

Crea_eImage(vidrayl,imS,2*xsize,2*ysize);

CreateImage(vidray2,im2,xsize,ysize);

CreateImage(vidray2,im4,2*xsize,2*ysize);

if(!ecrnl_flag _ !scrn2_flag) /* in multi-screen mode */

(

94

m

i

m

g

m

m

g

i

m

l

m

w

=_
m

u

m

w

r •

w

w

L

w

SubRadarlmage(iml); /* clear top window */

XPutlmage(XtDisplay(winwidgetl),XtWindoe(winwidgetl),

gcl,iml,O,O,O,O,xsize,ysize);

AddRadarlmage(iml); /* add radar image to new image */

SubRadarlmage(im2); /* clear other window */

XPutImage(XtDisplay(winwidget2),XtWindow(winwidget2),

gcl,im2,0,O,O,O,xsize,ysize);

AddRadarImage(im2);

XFluah(XtDisplay(winwidget2));

If(semi_flag) /* in single screen mode */

SubRadarlmage(im3);

XPutImage(XtDisplay(winvtdget4),XtWindow(winwidget4),

gcl,tm3,0,O,O,O,2*xsize,2*ysize);

AddRadarImage(im3);

XFlush(XtDtsplay(winwidget4));

if(scrn2_flag)

$ubRadarImage(im4);

XPutlmage(display,XtWindow(winwidget4),

gcl,im4,0,O,O,O,2*xsize,2*ysize);

AddRadarImage(im4);

XFlush(XtDisplay(winwidget4));

if(!scrnl_flag && !8crn2_flag) /* in single screen mode */

WriteMessage("Please wait, this will take awhile...",

XtWindow(win.idgetl),S,8OS,black);

else

WriteMessage("Please wait, this will take awhile...",

XtWindow(winuidget4),SOO,lO20,black);

void Shiftlmage(w, closure, call_data)

Widget w;

caddr_t closure, call_data;

Time time;

/*

• can't shift ISAR image

*/

if(isar_flag)

Error_window(6,0_NULL);

return;

/*

* must be in single screen mode to set offsets : do error window

* and return.

*/

95

u

if((!scrnl_flag) _ (!scrn2_flag))

{

Error_window (4,0, NULL) ;

return;

/* set up cursor stuff */

XtAddEventHandler(winwidget4, PotnterMottonMask,

False, track cursor, lcur_data);

XtAddEventHandler(winvidget4, ButtonPressMask,

False, end_cursor, [cur_data);

XGrabPointer(XtDisplay(winwidget4),

XtNindow(winwidget4),True,

PointerMotionMask [ButtonPreesMask ,

GrabModeAsyn¢, GrabModeAsync, XtWindow(wtnwidget4),

XCreateFontCursor(XtDisplay(wtnwidget4),XC_crosshair),

time);

init_cursor(w,&cur_data); =_=

void RotateImage(w,client_data,call_data)

Widget w;
caddr_t call_data,client_data;

Time time;

/*

* can't rotate ISAR image

*/

if(isar_flag)

{
Error_window(5,0,NULL);

return;

/*

must be in single screen mode to do rotation : do error window

* and return.

*/

if((!scrni_flag) _ (!ecrn2_flag))

Error_window(6,0,NULL);

return;

/* set up cursor stuff */

XtAddEventHandler(winwidget4, PointerMotionMask,

False, track_line, &l_data);

XtAddEventHandler(winwidget4, ButtonPressMask,

False, end_line, _l_data);

XGrabPointsr(XtDisplay(winwidget4),

Xt Nindo. (winwid_t4) ,True,

PointerMotionNask I ButtoRPressNask ,

frabModeAsync, GrabHodeAsync, XtNindow(winwidget4),

XCreateFontCursor(XtDisplay(winwidget4),XC_crosshair),

I

m

I

g

W

w

z

Z
m

i

!

W

m '

96

w

w

t

w

w

w

w

W

w

time);

init_line(winwidget4,&l_data);

}

void PopupScale1(e, client_data, call_data)

Widget w;

caddr_t client_data, call_data;

If(Is__flag) /* can't scale lear image */

/* pop-up error message and exit function */

Error_window(6,0,NULL);

return;
}
/,

* check to see if in window #1 single screen mode

*/

if(scrnl_flag)

/* set up rubber band stuff */

XtAddEventHandler(winwidget4, ButtonPrsssMask,

FALSE, start_rubber_band, .rb_data);

XtAddEventHandler(winwidget4, ButtonNotionNask,

FALSE, track_rubber_band, _rb_data);

XtAddEventHandler(einwidget4, ButtonRelsaseMask,

FALSE, end_rubber_band, ,rb_data);

XGrabButton(XtDisplay(winwidget4), AnyButton, AnyModifier,

XtWindow(winwidget4), TRUE,

ButtonPressMask I ButtonMotlonMask I ButtonReleaseMask,

GrabModeAsync, GrabModeAsync, XtWindo.(wtn.idget4),

XCreateFontCursor(XtDisplay(eingidget4),XC_crosshair));

XtPopup(scalepopl, XtGrabNone);

}
else

Error_eindow(3,0,NULL);

}

void PopupScale2(w, cllent_data, call data)

Widget w;

caddr_t cllent_data, call_data;

• if (isar_f lag)

/* pop-up error message and exit function */

return;

/*

* check to see if in window #2 single screen mode

*/

if Cscrn2_flag)

97

/* set up rubber ba_d stuff */

XtAddEventHandler(winwidget4, ButtonPressMask,
FALSE, start,rubber_band, arb_data);

XtAddEventHandler(winwidget4, ButtonMotionMask,

FALSE, track_rubber_band, krb_data);

XtAddEventHandler(winwidget4, Button_eleaseHask,
FALSE, end_rubber_band, _rb_data);

XGrabButton(XtDisplay(einwidget4), AnyButton, AnyModifier,

XtWindow(winwidget4), TRUE,

ButtonPressMask [ButtonMotionMask _ ButtonReleaseMask,

GrabNodeAsync, GrabNodeAsync, XtWindow(wineidget4),

XCreateFontCursor(XtDisplay(winwidget4),XC_crosshair));

XtPopup(scalepop2, XtGrabSone);

else

Error_window(S,O,RgLL);

void SetScale1(w, client_data, call_data)

Widget w;

caddr_t client_data, call_data;

char **dummy;

char *tamp;

/* re_ove event handlers and button grab */

XtRemoveEventHandler(winwidget4, ButtonPressMask,

FALSE, start_rubber_band, krb_data);

XtRemoveEventHandler(.inwldget4, ButtonReleaseMask,

FALSE, end_rubber_band, _rb_data);

XtRemoveEventaandier(winwidget4, ButtonMotionMask,

FALSE, track_rubber_band, _rb_data);

XUngrabButton(XtDisplay(linwidget4), AnyButton,AnyModifier,

XtWindow(einwidget4));

x_scale : (float)(X dim)/2./atof(xscale_str);

yl_scale : (float)(y1_dim)/2./atof(yscale1_str);

}

vold SetScale2(., client_data, call_data)

Widg®t .;
caddr_t client_data, call_data;

/* remove event handlers a_d button grab */

XtRemoveEventHandler(wtnwtdget4, ButtonPressMask,

FALSE, start_rubber_band, krb_data);

XtRemoveEventHandler(wlnwldget4, ButtonReleaseMask,

FALSE, end_rubber_band, _rb_data);

ZtRemoveEventHandler(wtnwidget4, ButtonMotionMask,

FALSE, track_rubber_band, &rb_data);

ZUngrabButton(XtDisplay(winwidget4), AnyButton,AnyModifier,

XtWindow(einetdget4));

98

w

J

I

I

u

J

J

m

m

J
W

D

W

w

w

w

w

y2_scale = (float)(y2_dim)/2./atof(yscale2_str);

z_scale = (float)(z_dim)/2./atof(zscale_str);

}

void Rad_rFilePopup(w, closure, call_data)

Widget w;

caddr_t closure, call_data;

{

XtPopup(popfile2,XtGrabNone);

}

void VideoFilePopup(w, closure, call_data)

Widget e;

caddr_t closure, call_data;

{

XtPopup(popfilel,XtGrabNone);
}

void VideoFilePopupla(w, client_data, call_data)

Widget w;

caddr t client data, call_data;

{
XtPopup(popfilela,XtGrabNone);

}

void IsarFilePopup(w, client_data, call_data)

Widget w;

caddr_t client_data, call_data;

{

XtPopup(popfile3,XtGrabNone);

}

/* video board callbacks */

void vid_cont(w, client_data, call_data)

Widget w;

caddr_t client_data, call_data;

{

ITI_cont();

}

void vid_single(w, client_data, call_data)

Widget w;

caddrt client_data, call.data;
{
unsigned char *camera;

camera = (unsi_ned char *)client_data;

ITI_frame(*camera);

}
void switch_camera(w, client_data, call_data)

Widget w;

caddr_t client_data, call_data;

{

-- 99

static char label_string[SO];

static Arg arg_ = { {XtNlabel, (XtArgVal)label_string} }; _ _. _,

unsigned char *camera;

camera = (unsigned char ,)client_data;

camera = -(,camera); / alternative is camera #I (side) ,/

J_ (*camera)

(

sprintf(label_etring. " SWITCH TO OVEP_EAD CAM ");

XtSetValues(w,arg,1);

}
else

sprintf(label_string, " SWITCH TO SIDEVIEW CAM ");

XtSetValues(w,arg,1)_

}

ITI_camera(*camera) ;

}

**

void Bye(w, closure, call_data)

Widget w;

caddr_t closure, call_data;

(

printf("Bye\n");

ITI_close(); /* close VME allocations */

XtDestroyWidget(toplevel); /* destroy all widgets */

XtDestroyWidget(top2);

XFreeColormap(XCDisplay(_CParenC(_)),cmap); /* free coloz_nap alloc. */

fflush(stdout); /* clean I/O channel */

exit(O);

}

/* setup main user interface with Widgets */

void xinteract()

arg arge[IO];

Cardinal i;

char name[1OO3;

static unsigned char cam = O;
static XtCallbackRec callback[2];

static XtPopdowniDRec pdrecl,pdrec2;

font=XLoadQueryFont(dieplay,"PellucidaSerif14B");

font2=XLoadQueryFont(display,"PellucidaSerifl2B");

/*

• Setup arguments for toplevel shell for menu

*/

XtSetArg(args[1], XtNwidth, 256);

XtSetArg(args[2], XtNheight, 1024);

XtSetArg(args[3], XtNtransient, TRUE);

XtSetArg(args[4], XtNx, 1024);

XtSetArg(args[5], XtNy, 0);

/* inSt. to overhead camera */

W

m
m
m

= =

m

Ii

W

g

_m

w

I

100

w

L
m

w

w

XtSetArg(args[6]. XtNforeground.fore);

XtSetArg(args[7]. XtIbackground.back);

XtSetValues(toplevel.args.8);
/*

* use same arguments for box for menu

*/

box = XtCreateManagedWidget ("BOX". boxWidgetClass.

toplevel, ares , EIGHT);

/*

* create menu items to go in box
*/

XtSetArE(arEs[O], XtNfont, font);

XtSetArg(arEs[1]. XtNforeground.white);

XtSetArg(arEs[2]. Xt_background,blue);

XtSetArg(args[S], XtNwldth,24S);

XtSetArg(args[4], XtNheight,40);

XtCreateManagedWidget("OSU/NASA XRADAR", labelWidgetClass, box, ares, 5);

XtSetArg(args[O]. XtNfont, font2);

XtSetArg(args[1]. XtNforeEround.,hite);

XtSetArg(args[2], Xt_ackground,blue);

XtSetArE(arEs[3],XtN.idth.245);

XtCreateManagedWidget(" FILE I/O ",

labelWidgetClass, box, are s, 4);

XtSetArg(args[O], XtHforeground,blue);

XtSetArg(arEs[1]. Xtlbackground.white);

XtSetArE(arEs[2].XtNwidth,245);

button6 = XtCreateManagedWidget(" READ VIDEO IMAGE FILE ".

commandWidEetClass, box. ares. 3);

XtSetArg(args[O], XtNforeground,blue);

XtSetArg(arEs[l], Xt_backEround.white);

XtSetArg(args[2],XtNwidth,248);

button9 = XtCreateManagedWidget(" WRITE VIDEO IMAGE FILE ",

commandWidgetClass, box. ares. S);

XtSetArE(arEs[O], XtNforegTound,blue);

XtSetArg(args[1], Xt_background,ehite);

XtSetArg(args[2],XtN.idth,245);

button7 = XtCreateManagedWidget(" READ RADAR IMAGE FILE ",

coee.andWidgetClass , box. ares, S);

XtSetArg(arEs[O] . XtNforeground.blue);

XtSetArE(args[1] , XtNbackground.white);

XtSetArg(args[2]. XtNwidth.245);

button16 = XtCreateManagedWidget("READ ISAR IMAGE FILE".

commandWidgetClass.box.arEs.3);

XtSetArE(arEs[O]. XtNforeEround.blue);

XtSetArE(arEs[1]. XtNbackground.white);

XtSetArg(arEs[2], XtNwidth. 245);

buttonl5 = XtCreateManagedWidget("REAL TIME DP",

coen, andWidgetClass, box. ares.3);

XtAddCallback(buttonlS.XtNcallback.imageloop.NULL);

XtSetArE(args[O]. XtNfont. font2);

XtSetArE(arEs[1]. XtNforegTound.white);

- 101

m

XtSetArg(args[2], Xt_background,blue);

XtSetArg(args[3],ltNwidth,245);

XtCreateManagedWidget(" VIDEO IMAGE CONTROL ',, " '

labelWidgetClass, box, ares , 41;

callback[O].callback = switch_screen;

XtSetArg(args[O], XtNcallback, callback 1;

XtSetArg(args[1], XtNforeETound,blue) ;

XtSetArg(args[2], XtNbackground.white);

XtSetArE(arEs[S],XtNwidth,245) ;

buttonl = XtCreateManagedWidget(" WINDOW1 -> FULL SCREEN ",

comnandWidgetClass, box, ares , 41;

callback[O].callback = switch_screen;

XtSetArg(arg8[O], XtNcallback, callback); _ _

XtSetArg(args[l], XtNforeground,blue);

XtSetArg(args[2], XtNbackETound,white) ;

XtSetArg(args[3],XtNwidth,245);

button2 = XtCreateManagedWidget(" WINDOW2 -> FULLSCREEN ",

commandWidgetClass, box, ares , 4);

callback[O].callback = switch_maps;

XtSetArg(args[O], XtNcaiiback, callback);

XtSetArg(args[l], XtNforeground , blue);

XtSetArg(args[2], XtNbackground, white);

XtSetArg(args[3], XtNwidth,245);

buttonl7 = XtCreateManagedWidget(" SWITCH TO MONO MAP ",

commandWidgetClass,box,args,4);

XtSetArg(arEs[O], XtNfont, font2);

XtSetArg(arEs[l], XtNforeETound, white);

XtSetArg(args[2], XtNbackground, blue);

XtSetArg(args[3],XtNwidth,245);

XtCreateManagedWidEet(" VIDEO BOARD CONTROL ",

labelWidgetClass, box, ares , 4);

XtSetArg(args[O], XtNforeground, blue);

XtSetArg(args[1], XtNbackground, white);

XtSetArg(args[2],XtNwidth,245);

buttonll = XtCreateManagedWidget(" LIVE VIDEO TO MONITOR ",

commandWidgetClass, box, ares , 3);

ltAddCallback(buttonll,XtNcallback,vid_cont,NULL);

XtSetArg(args[O], XtNforeground, blue);

XtSetArg(args[l], XtNbackground, white);

XtSetArg(args[2],XtNwidth,245);

buttonl2 = XtCreateManaEedWidget(" FRAME GRAB TO COMPUTER ",

com_andWidgetClass, box, ares, 3);

XtAddCallback(buttonl2,XtNcallback,vid_single,_cam) ;

XtSetArg(args[O], XtNforeground, blue);

XtSetArg(args[1], XtNbackground, white);

XtSetArg(args[2],XtNwidth,245);

button13 = XtCreateManagedWidget(" SWITCH TO SIDEVIEW CAM ",

commandWidgetClass, box, ares, S);

XtAddCallback(button13,XtNcallback,switch_camera,kcam);

XtSetArg(arEs[O], XtNfont, font2);

XtSetArg(args[1], XtNforeground, white);

g

m

m
i

m

m

g

m u

102

w

w

XtSetArg(args[2], XtWbackground, blue);

ltSetArg(args[3],XtNwidth,245);

XtCreateManagedWidget(" RADAR IMAGE CONTROL ",

labelWidgetClass, box, args, 4);

callback[O].callback = ShiftI_age;

XtSetArg(args[O], XtNcallback, callback);

XtSetArg(args[1J, XtNforeground, blue);
XtSetArg(args[2], XtNbackground, white);

XtSetArg(args[3],XtNwidth,245);

button8 = XtCreateManagedWidget(" SHIFT RADAR IMAGE ",

con_andWidgetClass, box, args,4);

callback[O].callback = RotateImage;

XtSetArg(args[O], XtNcallback, callback);

XtSetArg(args[1], XtNforeground, blue);

XtSetArg(args[2], Xt_ackground, white);

XtSetArg(args[3],XtNwidth,24S);

button8 = XtCreateManagedWidget(" ROTATE RADAR IMAGE ",

con_uandWidgetClass, box, args,4);

XtSetArg(args[O], XtNforegrotu_d, blue);

XtSetArg(args[l], XtNbackground, .hits);

XtSetArg(args[2],XtNeidth,245);

button3 = XtCreateManagedWidget(" WINDOW1 SCALE FACTORS ",

coesnandWidgetClass, box, args, 3);

XtSetArg(args[O], XtNforeground, blue);

XtSetArg(args[1], XtNbackground, white);
XtSetArg(args[2],X_Nwidth,24S);

button4 = XtCreateManagedWidget(" WINDOW2 SCALE FACTORS ",

commandWidgetClass, box, args, 3);

XtSetArg(args[O], XtNfont, font2);

XtSetArg(args[1], XtNforsground, white);

XtSetArg(args[2], Xt_background, blue);

XtSetArg(args[3],XtNwidth,245);

XtCreateNanagedWidget(" SYSTEM CALLS ",

iabelWidgetClass, box, args, 4);
callback[O].callback = Bye;

XtSetArg(args[O], XtNcallback, callback);

XtSetArg(args[l], XtNforeground, blue);

XtSetArg(args[2], Xt_background, whi_e);

XtSetArg(args[3],XtHeidth,245);

button8 = XtCreateManaged_idget(" EXIT ",

con_uand_idgetClass, box, _r_s,4);
/*

create 2 popup ma_nltude color bars, one for color, the other for mono

*/

color_scale = create__ag_scale(toplevel,cols);

sonG_scale = create__ag_scale(toplevel,aonocols);
/*

• create popup text windows for file name entry
*/

popfilel = CreateText_idget(toplevel,"Enter video image filename :",
VideoFileIn,bufferl,812,800);

103

popfilela = CreateTextWidget(toplevel,"Enter filename for video image :",

VideoFileOut,bufferla,S12,800)|

popfiie2 = CreateTextWidget(toplevel,'°Enter radar image fiiename :",

RadarFileln,buffer2,Sl2,800);

popfile3 = CreateTextWidget(toplevel,"Enter ISAR image filename :",

InarFileIn,buffer2,Si2,800);

/*

* add callbacks to appropriate buttons to activate popups;

* this works better than installing at creation;

*/
XtAddCallback(buttonB,XtNcallback,VideoFilePopup,NULL);

XtAddCallback(buttonT,XtHcallback,RadarFilePopup,lULL);

XtAddCallback(button9,XtNcallback,VideoFilePopupla,NULL);

XtAddCallback(buttonl6,XtNcallback,IsarFilePopup,NULL);

/*
* create a popup shell for displaying error messages

*/

error_popup = CreateErrorWidget(toplevel);

/*
* create two popups for scaling the radar image and register

callbcks to pop them up.

*/
8calepopl = CreateScaleWidget(toplevel,

" SCALE FACTORS FOR WINDOW #I ,

"Set horizontal dimension (inches) ",

"Set vertical dimension (inches) ",

SetScalel,xscale_str,yscalel_str,

&__recl,O,850);

scalepop2 = CreateScaleWidget(toplevel,

'..... SCALE FACTORS FOR WINDOW #2 ",

"Set horizontal dimension (inches) ",

"Set vertical dimension (inches) ",

SetScale2,yscale2_str,zscale_str,

tw_rec2,512,850);

XtAddCallback(button3, XtNcallback,PopupScale1,NULL);

X_AddCallback(button4, XtNcallback,PopupScale2,NULL);

/*

* set up gc for rubber band lines

*/
create_rubber_gc(winwidget4,&rb_data);

/*

* realize toplevel widget and all of its children

*/

XtRealizeWidget(toplevel);

XSetWindowColormap(XtDinplay(toplevel),XtWindoe(toplevel),cmap);

XtPopup(shelll, XtGrabNone);

XSetWindowColormap(XtDisplay(shelll),XtWindow(shelll),cmap);

XtPopup(shell2, XtGrabNone);

XSetWindowColormap(XtDlsplay(sheli2),XtWindow(shell2),cmap);

XtPopup(shelI3, XtGrabNone);

XSetWindowColormap(XtDisplay(ehellS),XtWindow(shell3),cmap);

104

B

I

g

m

I

g

m

=

m

m

E
|= i

m

XtPopup(color_scale,XtGrabNone);

)

Widget create mag_scale(parent,colormap)

Widget parent;

unsigned long *colormap|

Arg args[IO];

Widget popup,box;

char 8eom_str[20];

int x_size,y_size;

XtTranslations trans_table;

/*

* create a popup shell

*/

x_size = 230;

y_size = 300;

sprintf(geom_str,"X1ixX1i",x_size,y_size);

XtSetArg(args[O], XtNy, 678);

XtSetArg(args[1], XtNx, 1030);

XtSetArg(args[2], XtNgeometry,geom_str);

XtSetArg(args[3], XtNallowShellResize,False);

popup = XtCreatePopupShell("popup",transientShellWidgetClass°

parent,args,4);

XtSetArg(args[O].XtNheight.300);

XtSetArg(args[1],XtN.idth,230);

XtSetArg(args[2],XtNforeground,fore);

XtSetArg(args[3],XtNbackground,back);

box = XtCreateManagedWidget("box".boxWidgetClass.popup.args.4);

/* create a simple color bar for magnitude scale */

XtSetArg(args[O],XtNbackground,colormap[285]);

XtSetArg(args[1],XtNforeground,white);

XtSetArg(args[2].XtNfont.font2);

XtSetArg(args[S].XtNheiEht.50);

XtSetArg(args[4].XtN,idth.230);

XtCreateManagedWidget(" 0 dB ".labelWidgetClass.

box,arEs,8);

XtSetArg(args[O],XtNbackground,colormap[230]);

XtCreateNanagedWidget(" -5 dB ",labelWidgetClass,

box,arEs,5);

XtSetArE(arEs[O].Xtlrbackgrou_d,color_ap[205]);

XtCreateNanagedWidget(" -%0 dB ",labelWidgetClass,

box,arEs,5);

XtSetArE(arEs[O],XtNbackground,colormap[180]);

XtCreateManagedWidget(" -15 dB ",labelWidgetClass,

box,arEs,8);

XtSetArg(args[O],XtNbackground,colormap[155]);

XtCreateManagedWidget(" -20 dB ",labelWidgetClass,

box,arEs,S);

XtSetArg(args[O],XtNhackground,colormap[130]);

XtCreateManagedWidget(" -25 dB ",labelWidgetClass,

u

105

m

box ,args, 8) ;

return(popup) ;

)

B.2.3 Module ximage.c

/* xlmage, c

* file of routines for manipulating video and radar images

*/
#include "radar.h" /* includes all X includes */

/*** Function prototypes for this module ***/

void start_rubber_band();

void end_rubber_band();

void track_rubber_band();

void init_cursor();

void track cursor();

void end_cursor();

void init_line();

void track_line();

void end_line();

void _ulti_screen();

int AddRadarlmage();

int SubRadarImage();

int ClearRadarData();

int single_screen();

extern double square();

extern int rndf();

extern rotate_point();

extern XImage *iml,*im2,*imS,*im4;

extern Display *display;

extern Colormap cmap;

extern GC gcl,gc2;

extern Widget toplevel, top2,

shelll, shell2,

ahell3, shell4,

winwidgetl, winwidget2,

einwidget3, einwidget4,

popfilel,popfile2,error_popup,popmove,

image_message,

box,buttonljbutton2,

button3,button4,

buttonS,button6,

buttonT_buttonS,

button9,buttonl0,

buttonll,button12,

buttonlS,buttonl4;

extern int scrnl_flag,scrn2_flag;

extsrn Boolean mono;

extern int num_pnts;

extern float in_angle;

/* flags set if in single screen mode */

/* flag set if using mono colormap */

/* # of points in current radar image */

/* incident angle of plane rave */

106

w

m
m

J

J

I

l

u

I -

w

w

='W :

w

extern Boolean vid1_flag,vid2_flag;

extern Boolean isar_flag;

extern widget_struct w_recl, w_rec2;

extern rubber_band_data rb_data;

extern cursor_data cur_data;

extern line_data l_data;

extern unsigned long cols[256];

extern unsigned long monocols[256];

extern char buffer1[80], buffer2[80];

extern int gxposl, gyposl,

gxpos2, gypos2,

gxpos3, gypos3,

gxpos4, gypos4,

xsize, ysize,

screen; '

extern unsigned fore,back,red,white,blue,black;

extern float radar_data[IMAGE_PNTS][6];

extern char *vidrayl, *vidray2, *isarl, *isar2;

extern char *Image1, *Image2, *BigImagel, *BigImage2;

extern float x_scale, yl_scale, y2_scale, z_scale;

extern float xy_angle, yz_angle;

extern int x_dim, yl_dim, y2_dim, z_dim;

extern horizontal_flag;

extern int x_offset,yl_offset,y2_offset,z_offset;

CreateImage(raw_image,image,xsize,ysize)

char *raw image;

XImage *image;

int xsize,ysize;

{

int x,y,x2,y2,x21,y21;

int xlimit,ylimit;

unsigned char dat;

unsigned long *colormap;

unsigned long color;

if(mono) colormap = monocols;

else colormap = cols;

if(xeize == 512) /* doing small image */

{

for(y=O; y<ysize; y÷÷)

for(x=O; x<xsize; x++)

{

XPutPixel(image,x,y,colormap[*(raw_image + x + y*812)]);

}

}

else /* doing big image */

{

xlimit = xeize/2; /* for speed */

ylimit = ysize/2;

for(y=O;y<ylimit;y++) /* loop thru raw data */

{

107

y2 = 2*y; /* for speed */

y2! = y2+I;

for(x=O;x<xlimit;x++) /* dup. pixele into big image */

<

x2 = 2*x; /* for speed */

x21 = x2+1;

color = colormapE*(raw_Image + x ÷ 512.y)];

XPutPixel(image,x2,y2,color); _.

XPutPixel(image.x21,y2,color);

XPutPixel(image,x2,y21,color);

XPutPixel(image,x21,y21,color);

}

}

AddRadarImage(image)

X_mage *_mage;

unsigned int width,height; /* size of image point */

unsigned int px,py; /* screen coords, of point */

unsigned int magt;

int i;

float x,y,z; /* temp. vars. */

float rtn_angle;

u._si_ned long *colormap;

if(mono) colormap = monocole; /* set color map pointer */

else colormap = cols;

width = height = 6;

tin_angle = -PI/180.*in_angle;

if(image == iml)

for(i=O;i<num_pnts;i++)

{

x = radar_data[i3 [0] ;

y = radar_data[i] [I] ;

rotate_point(_x,&y,xy_angle);

px = rndf(x_scale*y - width/2. + x_offset + 286);

py = rndf(yI_scale_x - height/2. + yI_offset + 240);

_agt = rndf(285+80*loglO((float)(radar_data[i][3])));

XSetForegrouud(display,gcl,colormap[magt]);

XFlllRectangle(display,XtWindow(winwidgetl),

gcl,px,py,width,height);

if(!isar_flag)

draw_arrow(whlte,rin_angle+xy_angle); /* draw arrow */

}

If(Jmaga == Jm2)

for(i=O;i<num_pnts;i+÷)

I

D

m

m

w

U

m

i

W

108
I

w

=

w

w

y = radar_data[i][1];

z = radar_data[J3[2];

rotate_point(&x,&y,yz_angle);

px = rndf(fabs(y2 scale)*y - width/2. + y2_offset + 256);

py = rndf(-fabs(z_scale)*z - height/2. + z_offset + 240);

magt= rndf(255+80*loglO((float)(radar_data[i][3])));

XSetForeground(display,gcl,colormap[magt_);

XFillRectangle(display.XtWindow(wineidget2),

gcl,px,py,width,height);

}

}

if(image == im3)

for(i=O;i<numpnts;i++)

{

x = radar_dataEi] [0_ ;

y = radar_dataEi3 [I] ;

rotate_point(&x.&y,xy_angle);

px = rnd_(2*(fabs(x_scale)*y - width/2. + x_offset + 256));

py = rndf(2*(fabs(yl_scale)*x - height/2. +

yl_offset + 240));

magi = rndf(256+80*loglO((float)(radar_data[i][3])));

XSetForeground(display,gcl,colormap[magt]);

XFillRectangle(display,XtWindo.(win.idget4),

gcl,px,py,2*width,2*height);

}

If(!isar_flag)

draw_arrow(white,rin_angle+xy_angle);

}

if(image == Am4)

{

for(i=O;i<num_pnts;i÷+)

{

y = radar_dataEi] [1] ;

z = radar_data[i] [2] ;

rotate_point(ax,_y,yzangle);

px = rndf(2*(fabs(y2_scale)*y - width/2. +

y2_offset + 256));

py = rndf(2*(-fabs(z_scale)ez - height/2. +

z_offset + 240));

magi = rndf(258+80*loglO((float)(radar_data[i][3])));

XSetForeground(display,gcl,colormap[magt]);

XFillRectangle(display,XtWindow(winwidget4),

gcl,px,py,2*width,2*height);

}
}
}

ClearRadarData()

int i,J;

109

for(i=O;i<IMAGE_PNTS;i++)

for(j=O;j<8;j÷+)
radar_data[i][j] = O; -

num_pnts = O;

SubRadarImage(image)

XImage *image;

{

if(image == iml)

XClearArea(display,XtWindow(winwidgetl),O,O,O,O,Palse);

}

if(image == ira2)

XClearArea(display,XtWindow(winwidget2),O,O,O,O,False);

if((image == imS) [(image == im4))

XClearArea(display,XtWindow(winwidget4).O.O.O,O,False);

AddlsarImage(video,isar)

char *video, *lear;

int x.y,xs,ye;

unsigned char dat;

unsigned long *colormap;

int x2,y2,x21,y21;

If(mono) colormap = monocols;

else colormap = cols;

xs = ys = 512;

if(!scrnl_flag _l !scrn2_flag) /* in single screen mode */

WriteMessage("Please wait. this will take awhile...",

XtWindow(winwidgetl),8,6OS,white);

else

WriteMessage("Please wait, this will take awhile...",

XtWindow(winwidget4).3OO,lO20,white);

for(y=O; y<ys; y++)

for(x=O; x<xs; x++)

if(*(isar ÷ x + 512.y))

dat = *(lear + X + 512"y);

else

dat = *(video + x + 512.y);

XPutPixel(iml,x,y,colormap[datJ);

/. Now, do big image */

for(y=O;y<ys;y÷+) /* loop thru raw data */

{

110

g

g

I

m

m

M

u

m

I

U

w

i

i

m

=

w

y2 = 2*y; /* for speed */

y21 = y2+l;

for(x=O;x<xs;x++) /* dup. pixels into big image */

{

if(*(isar + x + 512.y))

dat = *(isar + x + 512.y);

else

dat = *(video + x + 512.y);

x2 = 2*x;

x21 = x2+I;

XPutPixel(im3,x2,y2,colormap[dat]);

XPutPixel(im3,x21,y2,colormap[dat]);

XPutPixel(im3,x2,y21,colormap[dat]);

XPutPixel(im3,x21,y21,colormap[dat]);
i

/*

* Now, need to display appropriate image: iml or im3

* and erase message.

*/

if(!scrnl_flag k& !scrn2_flag)

XPutImage(display,XtVindow(winwidgetl),gcl,iml,O,O,O,O,

xs,ys);
WriteMessage("Please wait, this will take awhile...",

XtWindow(winwidgetl),S,5OS,black);

else

{

XPutImage(display,XtWindow(winwidget4),gcl,im3,O,O,O,O,

2*xs,2*ys);

WriteHessage("Please wait, this will take awhile...",

XtWindow(winwidget4),SOO,lO20,black);

draw_arrow(color,angle)

unsigned long color;

float angle;

int re,l-p, /* radius of end and head of arrow */

ra, /* length of arrow head */

xe,ye, /* coords, of end of arrow */

xp,yp, /* coords of point of arrow */

xl,x2, /* x coords of arrow head lines */

yl,y2; /* y coords of arrow head lines */

float phi; /* angle of arrow head lines with shaft */

re = 239;

rp = 199;

ra = 8;

phi = PI/6.;

111

mm

xe = rndf(255 - re * cos(angle));

ye = rndf(239 + re * sin(angle));

xp = rndf(255 - rp * cos(angle));

yp = rndf(2S9 + rp * sin(angle));

xl = rndf(xp - ra * cos(angle - phi));

yl = rndf(yp + ra * sln(angle - phi));

x2 = rndf(xp - ra * cos(angle + phi));

y2 = rndf(yp + ra * sin(angle + phi));

if((!scrn1_flag) &_ (!scrn2 flag)) /* mult. screens */

{

XSetForeground(display,gcl,color);

XDrawLine(display,XtWindow(winwidgetl),

gcl,xe,ye,xp,yp);

XDrawLlne(dlsplay,XtWindow(winwidgetl),

gcl,xl.yl,xp,yp);

XDra.Line(dlsplay,XtWindow("inwidgetl),

gcl,x2,y2,xp,yp);

XDra_Line(display,XtWindow(winwidgetl),

gcl,xl,yl,x2,y2);

}

if(scrnl_flag) /* single screen on top view */

{

XSetForeground(display,gcl,color);

XDrawLine(XtDisplay(winwidset4),XtWindow(winwldget4),

gcl,2*xe,2*ye,2*xp,2*yp);

XDrawLine(XtDisplay(winwidget4),XtWindow(winwidget4),

gcl,2*xl,2*yl,2*xp,2*yp);

XDrawLlne(XtDisplay(wlnwidget4),XtWindow(winwidget4),

gcl,2*x2,2*y2,2*xp,2*[p);

XDrawLine(XtDisplay(winwidget4),XtWindow(winwidget4),

gc1,2*xl,2*yl,2*x2,2*y2);

}
}

single_screen(image)

XImage *image;
{
XtPopdown(shelll);

XtPopdown(she112);

XtPopdown(she113);

XtPopup(shell4,XtGrabNone)_

XClearWindow(XtDisplay(winwidget4),XtWindow(winwidget4)); "

XPutlmage(XtDisplay(winwidget4),XtWindow(wimwidget4),gcl,image,O,O,O,O,

2*xslze,2*yslze);

XFlush(display);

}

void multi_screen()

{
XtPopdoen(shell4);

XtPopup(shelll,XtGrabNone);

I

I

m

i

i

ms

ms

m :

m

i [

U

i

112

[

w

m

w

XtPopup(shell2,XtGrabNone);

XtPopup(ahell3,XtGrabNone);

XFlush(dleplay);

}

/***/

/* FUNCTIONS FOR RUBBER BAND LINES , ETC. */

/***/

create_rubber_gc(., data)

Widget w;

rubber_band_data *data;

{
XGCValues values;

Arg arg[2];

XtSetArg(arg[O], XtNback_rround, &values.foreground);

XtSetArg(arg[l], itNforeground, &values.background);

XtGetValues(w, arg,2);

/*
* set the FG to the XOR of the FG and BG . This creates inverse

* video.

*/

values.foreground = 260;

values.line_style = LineOnDffDash;

values.function = Gixor;

data->gc = XtGetGC(w, GCForeground [GCBackground [

GCFunction [GCLineStyle, _values);

)

void start_rubber_band(w, data, event)

Widget w;

rubber_band_data *data;

XEvent *event;

{

data->last_x = data->start_x = event->xbutton.x;

data->last_y = data->start_y = event->xbutton.y;

XDrawLine(XtDisplay(w), XtWindow(w),

data->gc, data->start_x,

data->start_y,data->last_x,data->last_y);

}

void track_rubber_band(w, data, event)

Widget w;

rubber_band_data *data;

XEvent *event;

(

XDrawLine(XtDisplay(w), XtWindow(w), data->gc,

data->start_x, data->start_y,

data->laat_x, data->last_y);

data->last_x = event->xbutton.x;

data->last_y = event->xbutton.y;

XDrawLine(XtDisplay(.), XtWindow(w), data->gc,

data->atart_x, data->etart_y,

113
_mw

i

data->last_x, data->last_y);

void end_rubber_band(., data, event)

Widget .;

rubber_band_data *data;

XEvent *event;

(
Arg arg[1];

int delta_x, delta_y;

double sum;

XDrawLine(XtDisplay(w), XtWindow(w), data->gc,

data->start_x, data->start_y,

data->last_x, data->last_y);

data->last_x = event->xbutton.x;

data->last_y = event->xbutton.y;

XFlush(XtDisplay(win_idget4));

delta_x = data->!ast_x - data->start x;

delta_y = data->last_y - data->start_y;

sum = square((double)delta_x) + square((double)delta_y);

/* now resensitize the buttons in the widget, except the "done"

* button , unless really done !

*/

XtSetArg(arg[O], XtNsensltive, True);

If(scrnl_flag)

if(horizontal_flag)

x_dim = rndfCsqrt(sum));

else

_l_dim = rndf(sqrt(sum));

XtSetValues(w recl.widgetl,arg,l);

XtSetValues(w_rec1..idget2,arg,l);

XtSetValues(w_recl..idget3,arg,l);

XtSetValues(._recl..idget4,arg,l);

XtSetValues(._recl..idgetS,arg,1);

else

if(horlzontal_flag) =,

y2_dim = rndf(sqrt(sum));

else

(
z_dim = rndf(sqrt(sum));

XtSetValues(w_rec2.widgetl,arg,1);

m

i

i

i

I

i

i

i

W

m

u

I

i

i

114
i)

m

L

J

XtSetValues(w_rec2.widget2,arg,l);

XtSetValues(w_rec2.widget3,arg,l);

XtSetValues(w_rec2.widget4,arg,l);

XtSetValuesCw_rec2.widget6,arg,1);

}

/,
* functions to draw cross hairs for aligning the

* radar image with the video image.

* start full screen cursor from button callback

*/
void init_cursor(w,data)

Widget w;

cursor_data *data;

{
char xmessage[40] , ymessage[40] ;

data->last_x = 511;

data->last_y = 479;

/* force cursor to center of image */

XWarpPointer(XtDisplay(winwidget4),None,XtWindow(winwidget4),

O,O,O,O,data->last_x,data->last_y);

/* draw initial cursor */

XDrawLine(XtDisplay(winwidget4),XtWindow(winwidget4),rb_data.gc,O,

data->last_y,lO23,data->last_y);

XDrawLine(XtDisplay(winwidget4),XtWindow(winwidget4),rb-data.gc,

data->last_x,O,data->last_x,g59);

sprintf(ymessage,"Y OFFSET = _+5d ",(data->last_x - 511));

sprintf(xmessage,"X OFFSET = _+Sd ",(479 - data->last_y));

WriteMessage(xmessage,XtWindow(winwidget4),5OO,lO20,white);

WriteMessage(ymessage,XtWindow(winwldget4),8OO,lO20,white);

}
/,

* track cursor within the window

*/

void track_cursor(w,data,event)

Widget w;

cursor_data *data;

XEvent *event;

int i,x,y;

char xmessage[40] , ymessage[40] ;

/* erase previous lines */

XDrawLine(XtDisplay(w),XtWindow(w),rb_data.gc,O,

data->last_y,_O23,data->last_y);

XDra,Line(XtDisplay(w),XtWindow(w),rb_data._c,

data->last_x,O,data->last_x,959);

data->last_x = event->xmotion.x;

data->last_y = event->xmotion.y;

115

- _._

XDrawLine(XtDisplay(w),XtWindow(w),rb_data.gc,O,

data->last_y,lO23,data->last_y);

XDrawLine(XtDisplay(w),XtWindow(w),rb_data.gc,

data->last_xtO,data->last_x,959);

sprintf(ymessage,"Y OFFSET = _+Sd ",(data->last_x - 511));

sprintf(xmessage,"X OFFSET = _+5d ",(479 - data->last_y));

WriteNessage(xmessage,XtWindow(winwidget4),8OO,1020,white);

WriteHessage(ymessage,XtWindow(winwidget4),8OO,lO20,white);

}
/,

* process button event at the end of cursor motion, and set shifts

*/

void end_cursor(w,data,event)

Widget w;

cursor_data *data|

XEvent *event;

(

Time time;

char xmessage[40], ymessage[40];

XDrawLine(XtDisplay(w),XtWindow(w),rb_data.gc,O,

data->last_y,1023,data->last_y);

XDrawLine(XtDisplay(w),XtWindow(w),rb_data.gc,

data->last_x,O,data->last_x,9Sg);

data->last_x = event->xmotion.x;

data->last_y = event->xmotion.y;

/*

* remove event handlers and ungrb pointer

*/

XtRemoveEventHandler(winwidget4,PointerMotionNask,

False, track_cursor,%cur_data);

XtRemoveEventHandler(winwidget4,ButtonPressMask,

False,end_cursor,&cur_data);

XUngrabPointer(XtDisplay(winwidget4),tlme);

/*

* clear message area

*/

XClearArea(XtDisplay(winwidget4),XtWindow(winwidget4),

O,960,O,63,False);

/*

* set offset values

*/

if(scrnl_flag)

(

x_offset = rndf((data->last_x - 511)/2.);

y1_offset = rndf((data->last_y - 478)/2.);

SubRadarImage(im3);

XPutImage(display,XtWindow(winwidget4),gcl,im3,0,O,O,O,

2*xsize,2*ysize);

AddRadarImage(im3);

}

if(scrn2_flag)

116

I

I

I

m

m

m

m

m

m

m

m

m

m_

z -
m_

7

w

{

y2_offset = rndf((data->last_x - 511)/2.);

z_offaet = rndf((data->last_y - 479)/2.);

SubRadarImage(im4);

XPutImage(display,XtWindow(winwidget4),gcl,im4,0,0,0,0,

2*xaize,2*ysize);

AddRadarImage (iD4) ;
}

void init_line(w,data)

Widget w;

line_data *data;

char message[40];

data->xl = 511;

data->x2 = 511;

data->y! = O;

data->y2 = 960;

XWarpPointer(ltDisplay(winwidget4),None,XtWindow(winwidget4),

0,0,0,0,511,240);

/*
* draw initial line

*/

XDrawLine(XtDisplay(winwidget4),XtWindow(winwidget4),rb_data.gc,

data->xl,data->yl,data->x2,data->y2);

/*

* initial message

*/

sprintf(message,"ANGLE = _+4d ",0);

WriteMessage(message,XtWindow(winwidget4),5OO,lO20,white);

void track_line(w,data,event)

Widget w;

linedata *data;

XEvent *event;

char message[40];

double deltax, deltay;

double angle;
/*

* erase previous line

*/

XDrawLine(XtDisplay(w),XtWindow(w),rb_data.gc,

data->xl,data->yl,data->x2,data->y2);

deltax = (double)(event->xmotion.x - 511);

deltay = (double)(479 - event->xmotion.y);

angle = atan2(-deltax,deltay);

data->xl = rndf(511 * (I. - sin(angle)));

data->x2 = rndf(511 * (1. + sin(angle)));

data->yl = rndf(479 * (I. - cos(angle)));

117

u

data->y2 = rndf(479 * (I. + cos(angle)));

/*
• draw new line

*/

XDra.Line(XtDisplay(.),XtWindo.(w),rb_data.gc,

data->xl,data->yl,data->x2,data->y2);

sprintf(message,"ANGLE = _+Sd ",rndf(-angle*180./PI));

WriteMessage(message,XtWindow(.in.ldget4),8OO,1020.white);

}

void end_line(w,data,event)

Widget w;

llne_data *data;

XEvent *event;

{

double deltax, deltay;

double angle;

Time time;

/*

• erase previous line

*/

XDra.Line(XtDisplay(.),XtWindo.(.).rb_data.gc,

data->xl,data->yl,data->x2,data->y2);

deltax = (double)(event->xmotion.x - 511);

deltay = (double)(479 - event->xmotion.y);

angle = atan2(-deltax,deltay);

/*

• remove event handlers and ungrab pointer

*/

XtRemoveEventHandler(winwidget4,PointerMotionMask,

False, track_line,_l_data);

XtRemoveEventHandler(winwidget4,ButtonPressMask,

False,end_line,&l_data);

XUngrabPointer(XtDisplay(winwidget4),time);

/*

• clear message area

*/

XClearArea(XtDisplay(.in.idget4),XtWindow(winwldget4),

O,960,O,63,False);

/*

• set rotation angles and redraw images

*/

if (s crnl_flag)

{
xy_angle = angle;

SubRadarlmage(im3);

XPutImageCdisplay,XtWindow(winwidget4),gcl,im3,O,O,O,O,

2*xsize,2*ysize);

AddRadarlmage(im3);

}

if (scrn2_f lag)

118

W

w

m

I

i

D

W

u

m

,mm -

w

u

u_

W

r

z

z E

_ r_

w

w

=

_=

i

yz_angle = angle;

SubRadarImage(im4);

XPutImage(display,XtWindow(winwidget4),gcl,im4,0,0,0,0,

2*xsize,2*ysize);

AddRadarImage(im4);

B.2.4 Module xframe.c

/*

* This is a file of routines for talking to the FGIO0 video board

*/
#include "radar.h" /* includes all X includes */

#include "frame.h"

/*
* Externals

,/

axtern

extern

extern

extern

extern

extern

extern

extern

extern

extern

extern

extern

/*

void clear_array();

char *vidrayl, *vidray2;

int scrnl_flag, scrn2_flag;

int xsize,ysize;

Widget winwidgetl,winwidget2,winwldget4,top2;

XImage *iml,*im2,*im3,*im4;

Display *display;

Colormap cmap;

GC gcl;

XFontStruct *font,*font2;

int fore,back;

Boolean vidl_flag,vid2 flag;

* globals defined in this module

*/

unsigned short *reg_addr; /* word pointer to reg[O] */

unsigned short *mem_addr; /* byte pointer to mem[O] */

int shmid_reg, shmid_mem; /* shared memory id's */

**

/*
* functlon to initialize shared memory and ITI board

*/

ITI_init()

{

int size, shmflag;

unsigned int p addr, p_base, reg_p_space, mem_p_space;

unsigned short *v_base;

'unsigned char *mem_base;

unsigned short tamp;

char *shmaddr;

extern int errno;

extern char *sys_errlist[];

key_t key;

119

z_

int i;

char *shmat();

unsigned short read_register();

signaI(SIGBUS,SIG_IGN);

/* set up shared address space for control registers */

if ((shmld_reg = shmget(KEG_KEY,

REG_REGION_SiZE,

SHMFLAG,

REG_PBYS_ADDR,

REG,PHYS_SPACE)) < O)

{

fprlntf(stderr,

"Error allocating shared memory for control registers\n");

fprintf(stderr,"shmget: errno: _d,_skn",

srrno,sys_srrllst[errno]);

exit(l);

}
if ((v base =

(unsigned short *)shmat(shmid_reg, O, 0)) < O)

{

fprintf(stderr,

"Error allocating memory for control reglsterskn");

fprintf(stderr, "shmat: Zs\n", sys_errlist[errno]);

exit(l);

}

reg_addr = v_base + (OxlOOO/sizeof(temp));

/* now set up shared memory for video memory */

if ((shmid_mem = shmget(MEM_KEY,

MEM_REGION_SIZE,

SHMFLAG,

MEM_PHYS_ADDR,

MEM_PHYS_SPACE)) < O)

{

fprintf(stderr,

"Error allocating shared memory for video memory\n");

fprintf(stderr,"shmget: _d -- _skn",

errno,sys_errlist[errno]);

exit(l);

}

if ((mem_addr =

(unsi_ed short *)shmat(shmid_mem, O, 0)) < O)

{

fprintf(stderr,

"Error allocating memory for video memorykn");

fprintf(stderr, "slunat: _d -- _s\n",

errno,sys_errlist[errno]);

exit(l);

}
/,

* Actually do something with device here

*/

m

m

I

i

m

,m

g

m

m

120
z

--4

l.J

r 1

L_
w

/* do a soft reset and set up default controls */

write_register(LUT_CONTROL,Oxffff); /* reset board */

erite_register(LUT_CONTROL,Ox3000); /* select board */

write_register(ZOOM,O); /* zoom & regmux = 0 */

write_register(MEMORY_CONTROL,Ox4040); /* Z-mode & pixel bur*/

.rite_register(PROCESSOR_MASK,O); /* no protection */

write_register(VIDEO_MASK,O); /* no protection */

wrlte_register(PIlEL_BUFFER,O); /* clear plx buffer reg. */

write_register(X_POINTER,O); /* set x-polnter */

write_register(Y_POINTER,O); /* set y-pointer */

write register(POINTER_CONTROL,O); /* no pointers */

write_regtster(CPU_ADR_CONTROL,Ox0407); /* enable fb add's. */

write_register(X_SPIN,OxlO); /* try this, or 1Oh */

write_register(Y SPIN,O); /* no y-spin */

write_register(PAN,O); /* no pan */

write_register(SCROLL,O); /* no scroll */

write_register(STATUSCONTROL,Ox3040);

ITI_lut(); /* set up LUT's */

}
/,

* Function to initialize the LUT's

*/

ITl_lut()

unsigned short i;

write_register(LUTCONTROL,0x2000); /* select LUT memory */

for(i=O;i<2S6;i++)

mem_addr[RED_BASE/2 + i] = i;

mem_addr[BLUE_BASE/2 + i] = i;

mem_addr[GREEN BASE�2 + i] = i;

}

for(i=O;i<256;i++)

mem_addr[ILUT_BASE/2 + i] = i;

}

write_reglster(LUT_CONTROL,Ox3000); /* select video mem. */

}

/,

Function to do a single frame grab and display it in the correct

* window. NOTE : This function deletes any current radar image.

*/
ITI_frame(cam)

unsigned char cam;

/* do an acquisition */

1Lnsigned short data;

int size,i;

size = S12"480;

wait_vb();

data = (unsigned short)read_register(STATUS_C0NTROL);

121

if(!cam) data = data _ OxO040;

if(cam) data = data _ 0x0048;

write_register(STATUS_CONTROL,data);

while(data=((unsigned short)read_register(STATUS_CONTROL)&Ox3000))|

if(!cam) data = data I 0x2040;

if(cam) data = data I 0x2048;

write_register(STATUS_CONTROL,data);

while(data=((ttnsigned short)read_register(STATUS_CONTROL)_OxSO00));

sleep(1);

if(!acrnl_flag _ !acrn2_flag) /* in multiscreen mode */

(

if(!cam) /* overhead camera */

(

for(i=O;i<size;i++)

vidrayl[i] = (unsigned char)((mem_addr[i] i OxOOff)/2);

vidl_flag = True;
/* this wiii tak%:some _ime so tell'em */

WriteMessage("Please wait, this will take awhile...",

XtWindow(winwldgetl),6,5OB,back);

Createlmage(vidrayl,iml,xsize,ysize);

Createlmage(vidrayl,imS,2*xsize,2*ysize);

XPutImage(XtDisplay(winwidgetl),XtWindow(winwidgetl),

gcl,im1,0,O,O,O,xsize,ysize);

/* erase message by writing same one in black */

WriteMessage("Please wait, this will take awhile...",

XtWindow(winwidgetl),6,BOS,fore);

else

(

for(i=O;i<size;i++)

vidray2[i] = (tmsigned char)((mem_addr[i] _ OxOOff)/2);

vid2_flag = True;

WriteMessage("Please wait, this will take awhile...",

XtWindow(winwidget2),B,6OB,back);

Createlmage(vidray2,im2,xsize,ysize);

Createlmage(vi.dray2,im4,2*xsize,2*ysize);

XPutimage(XtDisplay(winw_dget2),XtWindow(winwidget2),

gcl,im2,0,O,O,O,xsize,ysize); :_

WriteMessage("Piease Walt, this will take awhile...",

XtWindow(winwldget2),S,5OS,fore);

77_; _

}

if (scrn1_flag)

(

WriteMessage("Piease wait, this will take awhile...",

XtWindow(winwidget4),SOO,lO20,back);

i_(!cam)
{

for(i=O;i<size;i++)

vidray1[i] = (unsigned char)((mem_addr[i] k OxO011)/2);

vid1_flag = True;

m

z
m

J

m

m

N

m

m

I)
F

m [

m

m!

j ;

122

m

• =

j--

Createlmage(vidrayl,iml,xsize,ys_ze);

CreateImage(vidrayl,imS,2*xsize,2*ysize);

XPutlmage(XtDisplay(winwidget4),XtWindow(winwidget4),

gcl,imS,O,O,O,O,2*xsize,2*ysize);

else

for(i=O;i<size;i++)

vidray2[i] = (unsigned char)((Jem_addr[iS & OxOOff)/2);

vld2_flag = True;

/* create the images but don't display it */

CreateImase(vidray2,im2,xsize,ysize);

CreateImage(vidray2,im4,2*xslze,2*ysize);

WriteMessage("Please wait, this will take awhile...",

XtWindow(winwidget4),3OO,iO20,fore);

i_(scrn2_flag)

WriteMessage("Please wait, this will take awhile...",

XtWindow(winwidget4),3OO,1020,back);

i_(!cam)

for(i=O;i<size;i++)

vidraylKiS = (unsigned char)((mem_addrKi] & OxOOff)/2);

vidl_flag = True;

/* create the images but don't display */

CreateImage(vidrayl,iml,xsize,ysize);

CreateImage(vidrayl,imS,2*xsize,2*ysize);

else

for(i=O;i<size;i++)

vidray2[i] = (unsigned char)((mem_addr[i_ _ OxOOff)/2);

vid2_flag = True;

CreateImage(vidray2,im2,xsize,ysize);

CreateImage(vidray2,im4,2*xslze,2*ysize);

XPutIma_e(XtDisplay(wlnwid_et4),XtWindow(winwid_et4),

gcl,im4,0,O,O,O,2*xsize,2*ysize);

)

_rite_essage("Please wait, this will take awhile...",

Xt_indow(winwidget4),SOO,1020,fore);

}

/,

* function to put in continuous acquisition mode

*/

ITI_cont()

unsigned short data;

while(data=((unsigned short)read_register(STATUS_CONTROL)_Ox3000));

]23

I

data = read_reglster(STATUS_CONTROL);

data = data I 0x3040;

.rite_reglster(STATUS_CONTROL,data);

}

/,

+ function to s.itch cameras

*/

ITI_camera(cam)

unsigned char cam;

(

unsigned short data;

data = read_register(STATUS_CONTROL);

data = data k OxOfff;

.rlte_reglster(STATUS_CONTROL,data);

"hile(data=((unsigned short)read_register(STATuS_CONTROL)&Ox3000));

if(cam)

(

data = read_register(STATUS_CONTROL);

data = data & Oxff40;

data = data I OxO008;

-rite_reEister(STATUS_CONTROL,data) ;

}
else

data = read_register(STATUS_CONTROL);

data = data _ Oxff40;

write_register(STATUS_CONTROL,data);

}
}
/,

+ Function to release shared memory mapping for ITI board
*/

ITI_close()

{
/,

Nom that me're done playing .ith the device, free the region.
*/

ahmdt (0) ;
shmdt(O);

}
/,

Write a FGIO0 control register
*/

rrite_register(r,data)

unsigned short r,data;

(

rag addr[r/2] = data;

}

/,

+ Read a FGIO0 control register

*/

124

m

I

m

i

I

i

m

m

L

!L

: =

w

unsigned short read_register(r)

unsigned short r;

unsigned short data;

data = (unsigned short)reg_addr[r/2];

return data;

}
/,

* Wait for a vertical blanking period

*/
wait_vb()

{

/* wait out pending vertical blank */

while(!(read_register(STATUS_CONTROL)kOx0400));

/* wait for next vertical blank */

while(read_register(STATUS_CONTROL)&Ox0400);

/* wait it out */

while(!(read_register(STATUS_CONTROL)&Ox0400));

}

B.2.5

/*

Module xcom.c

*/

XCOM.C :

This is a file of functions for handling daSa transfer between

XRADAR and TTT.

#include "radar.h" /* includes all X includes */

extern XImage *iml,*im2,*im3,*im4;

extern Display *display;

extern Colormap cmap;

extern CC gcl,gc2;

extern Widget toplevel, top2,

shelll, shell2,

shell3, shell4,

winwidgetl, winwidget2,

winwldget3, winwldget4,

button15,exit_message;

extern int gxposl, gyposl,

gxpos2, gypos2,

gxpos3, gypos3,

gxpos4, gypos4,

xsize, ysize,

screen;

extern unsigned ins red,white,blue,black;

extern ins scrnl_flag,scrn2_flag;

exSern ins num_pnSs;

125

U

extern float in_angle;

extern float radar_data[IMAGE_PNTS][6];

I*

• Callback for radar imaging button

• NOTICE : This function has its own event processing loop for handling

• events while performing continuous radar image display. Only two

• events are recognized by this handler :

• 1) Property change events on the property being used to

• pass data from TTT to XRADAR.

• 2) A button press to exit the event handling loop and

• exit this callback routine.

• This function also mixes Xlib calls with Xt Intrinsics and

• Xaw widgets. Care is needed when attempting to modify this

• function.

*/

void image_loop(w, call_data, client_data)

Widget w;

caddr_t call_data, client_data;

{

Window root,window;

XEvent event;

int i,x,y;

if(!scrnl_flag &R !scrn2_flag)

{

window = XtWindow(winwidget2);

x = 5;

y = 505;

WriteMessage("To exit this function, click on RTDP button again.",

indo,x,y,white);

}

else

{

window = XtWindow(winwidget4);

x = 400;

y = 1020;

WriteNessage("To exit this function, click on RTDP button again.",

window,x,y,white);

}

root = DefaultRootWindow(XtDisplay(toplevel));

RDR_DATA = XInternAtom(XtDisplay(toplevel),"Data",O);

RDR_DATA_TYPE = XInternAtom(XtDisplay(toplevel),"Data Type",O);

/*

• write message to tell user how to exit this function

*/

XSelectInput(XtDisplay(toplevel),root,

PropertyCha_geMask);

while(TRUE) /* loop until user exits via button press */

126

z

g

=

i

m

m

i

m

m

m

m

[]

k •

r

w

{

XtNextEvent(_event); /* get next event */

switch(event.type) /* check event type */

{

case PropertyNotify :

if(event.xproperty.window == root &k

event.xproperty.atom == RDR_DATA)

printf("Got the data !\n");

display_data(); /* display new image */

}
else

XtDispatchEvent(&event);

break;

case ButtonPress :

if(event.xbutton.window == XtWindow(button15))

XDeleteProperty(XtDisplay(toplevel),

root, RDR_DATA);

XDeleteProperty(XtDisplay(toplevel),

root,RDR_DATA_TYPE);

/* erase message */

WriteMessage("To exit this function, click\

on RTDP button again.", window,

x,y,black);

return;

default : XtDispatchEvent(&event);

}

display_data()

int i,j, type, format, nitems, left;

char *retdata;

float *fretdata;

XGetWindowProperty(XtDisplay(toplevel),

DefaultRootWindow(XtDisplay(toplevel)),

RDR_DATA,O,4096,FALSE,

RDR_DATA_TYPE, &type, _format,

_nitems, kleft, kretdata);

if(type == RDR_DATA_TYPE)

<

fretdata = retdata;

num_pnts = (int)(*fretdata);

in angle = *(fretdata+l);

for(i=O;i<num pnts;i++)

for(j=O;j<8;j++)

{
radar_data[i][j] = *(fretdata+6*(i+l)+j);

}

127

= =_

2_

if(!scrni_flag && !scrn2_flag)
(

SubRadarlmage(iml); /* clear screens */

SubRadarlmage(im2);

XPutlmage(display,XtWindow(winwidgetl),gcl,im1,O,O,O,O,

xsize,ysize); /* put video image back */

AddRadarlmage(iml); /* add ne. radar image */

XPutImage(display.XtWindow(winwidget2),gcl,im2,0,O,O,O,

xsize,ysize);

AddRadarImage(im2);

}

if (scrnl_flag)

{

SubRadarImage(imS);

XPutImage(display,XtWindow(winwidget4),gcl,im3,O,O,O,O,

2*xsize,2*ysize);

AddRadarImageCimS);

}

if (scrn2_flag)

{

SubRadarlmage(im4);

XPutlmage(display.XtWindo.(.in.idget4).gcl,im4,0.O.O,O.

2*xsize,2*ysize);

AddRadarImage(im4);

}

}
}

B.2.6 Module xutH.c

/*

* util.c -- This file contains support routines for the xrdr.c

* main program.

*/

#include "radar.h" /* includes all X includes */

extern Xlmage *iml, *im2, *im3, *im4;

extern Display *display;

extern Colormap cmap;

extern GC gcl;

extern XFontStruct *font,*font2;

extern unsigned int fore, back;

extern Widget toplevel, top2,

shelll, shell2,

shellS, shell4,

winwid6etl,winwidget2,

winwidgetS,winwidget4_

popfilel, popfile2,

error_popup, msg_popup;

extern float x_scale, yi_scale, y2_scale, z_scale;

extern int x_offset, y1_offset, y2_offset, z offset;

U

m

I

D

I

l

z
J

B
g

m
I

i;

J

128

w

7 7 _

LJ

extern int horizonta1_flag.scrnl_flag.scrn2_flag;

extern int xsize.ysize;

extern float radar_data[IMAGE_PNTS][6];

extern int num_pnts; /* number of points in current radar image */

extern float in_angle;

extern char *vidrayl. *vidray2. *Imagel. *Image2;

extern char *BigImagel, *Biglmage2;

void Null_func();

double square();

static XtActionsRec actionsTable [] = {

{"Null_func",_ull_func}, };

static char defaultTranslations[] = "Ctrl<Key>J: Null_func() \n\

Ctrl<Key>O: Null_func() \n\

Ctrl<Key>M: Sull_func() kn\

<Key>Return: Null_func()";

Widget error button; /* global widgets in this module */

FILE *video_fp, *radar_fp;

I*

* a null function which does nothing but which is needed for intercepting

i <RET> typed in text widgets, We) do nothing if a <RET> is typed.

*I

void _ull_func()

{

}

I*
* a math round function
*1

int rndf(number)

double number;

double trash;

if(modf(number,itrash) > 0.5) return ceil(number);

else return floor(number);

}

double square(x)

double x;

{

double result;

result = x,x;

return result;

}

void rotate_point(x,y,angle)

float *x,*y;

float angle;

{

double tx,ty;

double r.theta;

129

tx = '_X;

ty = *y;

/*

* convert to polar

*/

r = sqrt(tx*tx + tyety);

if((tx == O.O)&k(ty==O.O))

theta = 0.0;

else

theta = atan2(ty,tx);

/*

* rotate point

*x = (float)(r * cos(theta + angle));

*y = (float)(r * sin(theta + angle));

**
clear_array(array.size)

char *array;

int size;

{

int i;

for(i=O;i<size;i++) *(array + i) = O;

}

/__e_$_%e_eee_e_ee_$ese_eeee_$_e_e_eee_eee_e__e/

/*

* callback proc to popdo.n the popup .indogs

void pop_do.n(., cllent_data, call_data)

Widget _;

caddr_t client_data, call_data;

<

XtPopdovn((Widget)client_data);

}

/,

a function to activate a popup error .indo. and display the

appropriate error message.

*/

void Error_-indo.(err_code,err_no,str)

int err code,err_no;

char *err;

<

static char error_string[lO0];

static Arg arg[] = { {XtNlabel, (XtArgVal)error_string} };

char temp[100];

s.itch(err code)

{

case I : /* file i/o error */

sprintf(error_string, " X-Radar I/O Error : ");

sprintf(temp,"File '_s' Not Found ... ",sir);

130

m

m

U

m_

W

m

L

w

strcat(error_string,temp);

break;

case 2 : /* scale factors not set yet */

sprintf(error_string," X-RADAR Protocol Error : ");

sprintf(temp,"Radar image scale factors not set ... ");

strcat(error_string,temp);

break;

case S : /* trying to set scale factor in wrong mode */

sprintf(error_string," X-RADAR Protocol Error : ");

strcat(error_string,"Must be in single screen ");

strcat(error_string,"mode to set scale factors.'*);

break;

case 4 : /* trying to set offsets in wrong mode */

sprintf(error_string," X-RADAR Protocol Error : ");

strcat(error_string,"Must be in single screen ");

strcat(error_string,"mode to set offsets.");

break;

case 5 : /* trying to do shift,etc, to ISAR image */

sprintf(error_string," X-RADAR Protocol Error : ");

strcat(error_string,"Function not available for ");

strcat(error string,"ISAR images.");

break;

case 6 : /* trying to rotate in wrong mode */

sprintf(error string," X-RADAR Protocol Error : ");

strcat(error_string,"Must be in single screen ");

strcat(error_string," mode to rotate image.");

break;

case 7 : /* bad filename : unable to open file */

sprintf(error string,"X-RADAR I/O Error : ");

strcat(error_string,"Bad file name , unable ");

strcat(error_string,"to create or open file.");

break;

XtSetValues(error_button,arg,XtNumber(arg));

XBell(XtDisplay(toplevel), lO0);

XtPopup(error_popup,XtGrabNone);

}
/***/

/*

* write_video file() -- writes a video image to disk in binary format

*/

write video file(fname,array)

Char fname[];

char *array;

/* open file for writing */

if((video_fp = fopen(fname,"wb")) == NULL)

Error_window(7,0,fname);

return(O);

}

131

/* write video file to disk */

fwrite(array,sizeof(*array),(612*Bl2),video_fp);

fcloee(video_fp);

} /* end write_video_file() */

* read video file() -- reads video image file into named array memory,

* initializes globals: mapchars, and video_fp (file descriptor)
*/

read_video_file(fname,array) ,,

char fname[];

char *array;

long i,j;

/* open video image file */

if((video_fp = fopen(fname, "rb")) == NULL)

Error_window(l,O,fname);

return(O);

/* read video file into video array */

fread(array, sizeof(*array),(B12*B12),video fp);

fclose(video_fp);

return(I);

} /*end read video_file()*/

/*

* read_sir_file() -- reads slf image file into named array memory,

* initializes globals: mapchars, and video_fp (file descriptor).

* Included to provide upward compatibility for SIF files (video image

* files from NetraByte NV-I software), This function is_not Currently used.
,/

read_sif_f ile (fname, array)

char fname[] ;

char *array;

long i,J;

char tl[256*240J;

char t212Bfl*240j;

char t31256.240] ;

char t4[256.240] ;

/* open video image file */

if((video_fp = fopen(fname, "rb")) == NULL)

Error_window (1, O, fname) ;

return(O) ;

/* read video file into video array */

fread(t I, sizeof (char), (256*240) ,video_fp) ;

fread(t2, slzeof (char), (256*240) ,video_fp) ;

fread(t3, sizeof(char), (256*240) ,video_fp) ;

132

m

m

D

m

U

z
g

l

u

u

u_

g

__--_

E !

I

=

w

F_

LJ

fread(t4, s izeof (char), (256*240) ,video_fp) ;

for (j=O; j <240.512; j+=512)

¢

for(i=O;i<256;i++) arrayEi+j] = tlEi + j/23;

for(i=O;i<258;i++) array[i+256+j] = t2[i + j/2];

}

for(j=O; J<240.512; j+=512)

{

for(i=O;i<256;i++) array[i+j + 240.512] = t3[i + j/2];

for(i=O;i<258;i++) array[i+256+j + 240.5123 = t4[i + J/2];

}

fclose(video_fp) ;

return(I) ;

/*end read_file()*/

/* a function to read in x,y,z,mag format radar data files.

*/
read_radar_f il e (fname)

char fname[] ;

float x,y,z,mag;

int i ;

FILE *radar_fp ;

if((radar_fp = fopen(fname,"r'°)) == NULL)

Error_window (I, O, fname) ;

return(O) ;

fscanf (radar fp, '°_.d _f\n" ,Rnum_pnt s ,_in angle) ;

for (i =0 ; i<num pnt s ; i++)

fscanf(radar_fp,"7.f 7,f 7.f Y.d\n",_x,&y,&z,imag) ;

radar_data[i] [0] = x;

radar_data[i] [I] = y;

radar_data[i] [2] = z;

radar_data[i] [3] = mag;

fclose(radar_fp);

return(I); /* successful read of data file */

/***********e,$$$e$,,e**$,$,,$$$e,,$***$*****$e,,,$e,***,$,e,,,e$,,e$*******$,/

a function to create a "composite" widget_ich- is like a dialog Widget,/, */

/* but which is" easier to control. */

Widget CreateTextWidget(parent,label_str,cb_func,buffer,

x_pos,y_pos)

Widget parent;

char *label_sir;

void (*cb_func)();

char *buffer;

int x_pos, y_pos;

/* parent of composite widget */

/* prompt string to display */

/* pointer to callback function */

/* pointer to buffer to hold string */

/* x,y position of pOpUp */

133

{

Widget popup, button, box, label, w;

Arg args[10] ;

int x_size, y_size;

char geom_str[20];

XtCallbackRec callback[2];

XtTranslations trams_table;

/*

* register new actions and compile the n_ew _translation table

*/

XtAddActions(actionsTable,XtNumber(actionsTable));

trams_table =

XtParseTramslationTable(defaultTranslations);

/*

* create apopup shell for the text widget

*/

/* first set up geometry string */

x_size = 450;

y_size = i00;

sprintf(geom_str,"_lix_li",x_size,y_size);

XtSetArg(args[O], XtNx, x_pos);

XtSetArg(args[1], XtNy, y_pos);

XtSetArg('args[2j, XtNgeometry,ge0m_str);

XtSetArg(args[3], XtNallowShellResize,False);

popup = XtCreatePopupShell("popup",tramsientShellWidgetClaes,

parent,args,4);

XtSetArg(args[O], XtNheight, y_size);

XtSetArg(args[1], XtNwidth, x_size);

XtSetArg(args[2], XtNforeground,fore);

XtSetArg(args[3], XtNbackground,back);

box = XtCreateManagedWidget("box",boxWidgetClass,popup,args,4);

XtSetArg(args[O], XtNlabel, label_str);

XtSetArg(args[l], XtNforegrou_nd,fore)|

XtSetArg(args[2], XtNbackground,back);

label = XtCreateManagedWidget("label",labelWidgetClass,box,args,3);

/*

* create an ascii string widget.

*/

XtSetArg(args[O], XtNeditType, (XtArgVal)XttextEdit);

XtSetArg(args[1], XtNstring, buffer);

XtSetArg(args[2], XtNwidth, (x_size-lO));

XtSetArg(args[S], XtNlength, 40);

XtSetArg(args[4], XtNforeground,fore);

XtSetArg(args[5], XtNbackground,back);

w = XtCreateManagedWidget("string",asciiStringWidgetClass,box,

args,6);

* create a button to close the box

XtSetArg(args[O], XtNlabel, " OK ");

XtSetArg(args[1], XtNforeground,fore);

134

gll

I!

I

u

I

I

i

I

n
m
m

U

W_

J

J

g_

m ;

z_

=

t-

XtSetArg(args[2], XtNbackground,back);

button = XtCreateManagedWidget("command",commandWidgetClass,

box, args,3);

/*

* add callbacks to pop down the box

*/
XtAddCallback(button, XtNcallback,cb_func,buffer)_

XtAddCallback(button, XtNcallback,pop_down,popup);

/*

* Merge the defined translations gith the existing

* translations.

*/
XtOverrideTranslations(w,transtable);

XtSetKeyboardFocus(box,w);

XtRealizeWidget(popup);

XSetWindo.Colormap(XtDisplay(popup),XtWindow(popup),

cmap);
return(popup);

}

/* callback for the ScaleWidget. When executed it sets the sensitivity

$ of all the widgets within the ScaleWidget to false. The sensitivity

* of the widgets is reset after the rubber band process has been completed.
*/

void ClickOff(w, w_struct, call_data)

Widget .;

widget_struct *w_struct;

taddr_t call_data;

{

Arg arg[1];

XtSetArg(arg[O],XtNsensitive,False);

XtSetValues(w_struct->widgetl, arg,1);

XtSetValues(w_struct->eidget2, arg,1);

XtSetValues(w_struct->widget3, arg,1);

XtSetValues(w_etruct->widget4, arg,1);

else horizontal_flag = False;

}

/* creates a "composite" widget for entering scale factors, etc.
$

*/

_id_et CreateScaleWidget(parent,label,label_strl,label_str2,cb_func,

bufferl,buffer2,__struct,x_pos,y_pos)

Widget parent;

char *label;

char *label_strl,

*label_str2;

void (*cb_func)();

char *buffer1,

*buffer2;

/* parent of composite eid_et */

/* label for _hole box */

/* prompt strings to display */

/* pointer to callback function */

/* pointers to buffers to hold strings */

135

widget_struct *w_struct; /* pointer to structure to hold widgets */

tnt x_pos, y_pos; /* x,y position of popup */

Widget popup, box, labell, label2, wl, w2, close_button;

Arg args[10];

int x_size, y size;

char geom_str[20];

XtCallbackRec callback[2];

XtTranslations trans_table;

/*

* register new actions and compile the new translation table

*/

XtAddActions(actionsTable,XtNumber(actionsTable));

trans_table =

XtParseTranslationTable(defaultTranslations);

/*

* create a popup shell for the scale widget

*/

/* first set up geometry string */

x size = 500;

y_size = 125;

sprintf(geom_str,"_lix_li",x_size,y_size);

XtSetArg(args[O], XtNx, x_pos);

XtSetArg(a_rgs[1], XtNy, X_yOs)_; _

XtSetArg(args[2], XtNgeometry,geom_str);

XtSetArg(args[3], XtNallowShellResize,False);

popup = XtCreatePopupShell("popup",transientShellWidgetClass,

parent,args,4);

XtSetArg(args[O], XtNheight, y_size);

XtSetArg(args[1], XtNwidth, x_size);

XtSetArg(args[2], XtNforeground,fore);

XtSetArg(args[3], XtNbackground,back);

box = XtCreateManagedWidget("box",boxWidgetClass,popup,args,4);

XtSetArg(args[O], XtNlabel, label);

XtSetArg(args[1], xtNforeground,fore);

XtSetArg(args[2], XtNbackground,back);

XtCreateManagedWidget("label",labelWidgetClass,box,args,3);

XtSetArg(args [0], XtNiabei, label_strl)

XtSetArg(args[1], XtNforeground,fore);

XtSetArg(args[2], XtNbackground,back);

label1 = XtCreateManagedWidget("label",commandWidgetClass,box,args,3);

/*

* create an ascii string widget.

*/

XtSetArg(args[O], XtNeditType, (XtArgVal)XttextEdit);

XtSetArg(args[1], XtNstring, buffer1);

XtSetArg(args[2], XtNwidth, 110);

XtSetArg(args[3], XtNlength, 10);

XtSetArg(args[4], XtNforeground,fore);

XtSetArg(args[5], XtNbackground,back);

wl = XtCreateManagedWidget("string",asciiStringWidgetClass,box,

136

I

E

m
l

m

L

m

I

m

J

I

m

m

I

m

I

z
=-

b

args,6);

/*

* create another label and ascii string widget.

*!

XtSetArg(args[O], XtNlabel, label_sir2);

XtSetArg(args[1], XtWforeground,fore);

XtSetArg(args[2], Xtl_background,back);

label2 = XtCreateManagedNidget("label",commandWidgetClass,box,args,3);

XtSetArg(args[O], XtNeditType, (XtArgVal)XttextEdit);

XtSetArg(args[l], XtNstring, buffer2);

XtSetArg(args[2], XtNwidth, 110);

XtSetArg(args[3], XtNlength, 10);

XtSetArg(args[4], XtWforeground,fore);

XtSetArg(args[5], XtNbackground,back);

w2 = XtCreateManagedWidget("string",asciiStringWidgetClass,box,

args,S); •

/*
* create a button to close the box

*l

XtSetArg(args[OJ, XtNlabel, " OK ");

XtSetArg(args[I], XtNforeground,fore);

XtSetArg(args[2], XtNbackground,back);

XtSetArg(args[3], XtNsensitive,False);

closebutton = XtCreateMaiiagedWidget("command",commandWidgetClass,

box, args,4);

/*

* add callbacks to pop down the box

*/

XtAddCallback(close_button, XtNcallback,cb_func,NULL);

XtAddCallback(close_button, XtNcallback,pop_down,popup);

/*
* fill in the structure for client_data and add callbacks

* for the command labels.

*/

w_struct->widgetl = labell;

w_struct->widget2 = label2;

w_struct->widget3 = wl;

w_struct->widget4 = w2;

w_struct->widgetS = close_button;

XtAddCallback(labell,XtNcallback,ClickOff,w_struct);

XtAddCallback(label2,XtNcallback,ClickOff,w_struct);

/*

* Merge the defined translations with the existing

* translations.

*/

XtOverrideTranslations(wl,trans_table);

XtOverrideTranslations(w2,trans_table);

XtRealizeWidget(popup);

XSetWindowColormap(XtDisplay(popup),XtWindow(popup),

cmap);

return(popup);

137

/* a function to create a widget for error messages which must be acknowledged

* by the user. ie) click on the widget to close the error message window
*/

Widget CreateErrorWidget(parent)

Widget parent;

(

Widget popup, box;

Arg args[lO];

XtSetArg(args[O], XtNx, 400);

XtSetArg(args[1], XtNy, 900);

XtSetArg(args[2], XtNallowShellResize, True);

popup = XtCreatePopupShell("popup",translentShellWidgetClass.

parent,args,3);

/*

* create a box to go in the shell

*/

XtSetArg(args[O], XtNforeground, fore);

XtSetArg(args[1], XtNbackground, back);

XtSetArg(args[2], XtNtransient, True);

XtSetArg(args[3], XtNheight, 100);

XtSetArg(args[4], XtNwidth, 200);

box = XtCreateManagedWidget("box",boxWidgetClass,popup,args,5);
/*

* create a button to go in the box;

* only thing the button does is display the error message

* and pop down the shell .hen selected.

* Error message set in function Error_.indow().
,/

XtSetArg(args[O], XtNforeground, fore);

XtSetArg(args[1], XtNbackground, back);

error_button = XtCreateManagedWidget("error",commandWidgetClass,

box,args,2);

/*

* add callback to popdown the shell

*/

XtAddCallback(error_button, XtNcallback, pop_down,popup);

XtReallzeWidget(popup);

XSetWindo.Colormap(XtDisplay(popup), XtWindoe(popup),

cmap);

return(popup);

**

/* ExposeEvent event handler for the graphics widgets */
void RePaint(w,client_data,event)

Widget w;

caddr_t client_data;

XEvent *event;

int dest_x,dest_y,

m

I

u

D

l

m

I

Z

J

z

S_

mm
i

138
I'

m_

L

width,height,

count;

dest_x = event->xexpose.x;

dest_y = event->xexpose.y;

width = event->xexpose.width;

height = event->xexpose.height;

count = event->xexpose.count;

if(!count)

{
if(w == winwidgetl)

{

XPutImage(XtDisplay(w),XtWindo.(w),

gcl,iml,dest_x,dest y,

dest_x,dest_y,width,heisht);

AddRadarImage(iml);

}

if(w == winwidget2)

{

XPutImage(XtDisplay(w),XtWindow(w),

gcl,im2,dest_x,dest y,

dest_x,dest_y,width,height);

AddRadarImage(im2);

}

if(w == winwidget4)

{

if(scrnl flag)

{

XPutImage(XtDisplay(w),XtWindow(w),

gcl,im3,dest_x, dest_y,

dest_x,dest_y,width,height);

AddRadarImage(im3);

}

else if (scrn2_flag)

{

XPutImage(XtDisplay(.),XtWindow(.),

gcl,im4,dest_x, dest_y,

dest_x,dest_y,width,height);

AddRadarlmage(im4);

}

}

}

XFlush(XtDisplay(w));

}

/*
* A function to write a message on the screen immediately (putting up

* a message widget requires too much time due to buffering)

*/

WriteMessage(message,window,x,y,color)

char *message;

139

Window window;

int x,y;

unsigned int color;

I

XSetForegrou_d(display, gcl, color);

XSetFont(display,gcl,fontR'>fid);

XDrawImageString(display,window,gcl,x,y,message,strlen(message));

XSync(display,O);

I

m

z

m

=.

m

m
m

m
ss
m

i

m

m

m

m

m

140

v •

Appendix C

X-RADAR Errors

=

_ r

L;g

The recoverable errors which can be generated while using X-RADAR are listed

below by the error message displayed for each. While unrecoverable errors will

usually cause the program to crash, every attempt has been made to keep this

from happening.

C.1 X-RADAR Error Messages

1. "X-RADAR I/O Error : File filename Not Found"

While this error is fairly self-explanatory, it can also occur if no file name is

entered at the prompt. Suggested remedies are making sure the file exists

and is readable and checking the complete path and file extension spellings.

2. "X-RADAR Protocol Error : Must be in single screen mode to set scale

factors."

Again, this error is self-explanatory. The reason this was implemented as an

error was to lessen the possible visual errors in setting the scale factors.

3. "X-RADAR Protocol Error : Function not available for ISAR images."

This error covers a number of functions which were not implemented for

ISAR images due to the format of ISAR images. While it is technically

possible to apply these functions to ISAR images, it was decided to leave

this work for the future.

141

4. "X-RADAR Protocol Error : Must be in single screen mode to rotate image."

As described previously for setting the scale factors, a full-screen image is

easier to see than a smM1 image.

5. "X-RADAR Protocol Error : Must be in single screen mode to shift image."

Same as above.

u

H

m

W

m

i

I

g

7

W

m

i
g

z
R

I

m

U

i
W

142

2_

W

m
W

=

Appendix D

X-RADAR Data File Formats

D.1 Radar Image File Format

Radar image files are formatted ASCII text files consisting of the number of scat-

tering centers, the angle of incidence of the radar signal, followed by the x, y, z coor-

dinates (in inches from the phase center of the target) and the magnitude of each

scattering center (normalized to 1.0) in the following format (U = <space>) :

number of scattering cen£ersUincideni angle <re_>

xUyUzUmagnitude <ret>

xUyUzUmagnitude <ret>

<eof>

An example is given below :

<tof>

'4 45.0 <ret>

12.24 10.38 4.57 .87 <ret>

4.08 5.67 7.99 .45 <ret>

34.45 40.00 23.00 .33 <ret>

27.99 30.12 12.87 .55 <ret>

<eo_>

143

D.2 Video Image File Format

Video image files consist of row-column binary raster scan dumps of the 512x480

image array. The data type of each pixel in the raster scan is 'unsigned short'

or 'byte', with a value of zero representing the lowest brightness and a value of

255 representing the highest brightness. The plxel data is written to the file as an

unformatted stream, as shown below :

<tof>pixell,rowl ;pixel2,rowl ;... ;plxe1511,rowl ;pixell ,row2; pixel2,row2;

... ;pixel511,row480 <eof>

g

D

g

m

[]

II

g

I

D.3 IS AR Image File Format

ISAR image files are of the same format as video image files but the data is scaled

differently. Due to the look-up tables used for displaying the ISAR data, a pixel

value of 0 represents no data, a value of 128 represents the lowest magnitude to be

displayed and a value of 255 represent the highest magnitude to be displayed.

l

I

m

144 m
.m

I

t-

Bibliography

[1] A. Dominek, I. Gupta, W.D. Burnside, "A Novel Approach for Two- and

Three-Dimensional Imaging", The Ohio State University ElectroScience Lab-

oratory, Department of Electrical Engineering.

[2] Walton, Eric K., "Comparison of Fourier and Maximum Entropy Techniques

for High Resolution Scattering Studies", Radio Science, Vol. 22, No. 1,

January-Febuary 1987, pp. 350-356.

[3] Harrington, Roger F., Time.Harmonic Electromagnetic Fields, McGraw-Hill,

1987, pp. 292-298.

[4] T.H. Lee and W.D. Burnside, "A Focussed Image Processing Procedure Us-

ing Near Zone Scattered Fields Obtained in the Compact Range," Technical

Report 720150-1, 1988, The Ohio State University ElectroScience Laboratory,

Department of Electrical Engineering.

[5] Mensa, D.L., High Resolution Radar Imaging, Artech House, 1981.

[6] Lin, W.,"A User-Oriented, Menu-Driven, Software Interface to Control a

Radar System and Manipulate Measured Data", Ohio State University, De-

partment of Electrical Engineering, M.Sc. thesis, August, 1988.

[7] R.R. Swick and T. Weissman, "X Toolkit Widgets - C Language X Interface",

Massachusetts Institute of Technology and Digital Equipment Corporation,

1988.

[8] J. McCormack, P. Asente, R.R. Swick, "X Toolkit Intrinsics - C Language In-

terface", Massachusetts Institute of Technology and Digital Equipment Cor-

poration, 1988.

145

[9] Jones, Oliver, Introduction to the X Window System, Prentice Ilall, Inc., 1989. i

[10] Young, Douglas A., X Window Systems : Programming and Applications with

Xt, Prentice Hall, Inc., 1989.

[11] "FG-100-V User's Manual", Part Number 47-H10018-01, Imaging Technology

Inc., 1987.

[12] "UTeK V User's Reference", Part Number 070-?576-00, Tektronix Inc., 1989.

[13] M.T. Bell and W. Scheckla, "OEM/VAR System Integration Support for

Third-Party I/O Bus Devices", Tektronix Inc., 1989.

[14] Lin, W., Personal Communication, in preparation for publication, The Ohio

State University ElectroScience Laboratory, Department of Electrical Engi-

neering.

m

D

z

m

m

m

m
g

I

!

m

i

g

m

I

!

U

U

146

I
m

II

